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Abstract

Systems for CRISPR-based combinatorial perturbation of two or more genes are emerging as powerful tools for
uncovering genetic interactions. However, systematic identification of these relationships is complicated by sample,
reagent, and biological variability. We develop a variational Bayes approach (GEMINI) that jointly analyzes all samples
and reagents to identify genetic interactions in pairwise knockout screens. The improved accuracy and scalability of
GEMINI enables the systematic analysis of combinatorial CRISPR knockout screens, regardless of design and
dimension. GEMINI is available as an open source R package on GitHub at https://github.com/sellerslab/gemini.
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Background
A genetic interaction can be defined as a combination of
genetic alterations that leads to an unforeseen loss or gain
of cell viability [1]. Genetic interactions have been studied
in model systems to elucidate the functional relationships
within pathways and important cellular processes [2–4].
In addition, genetic interactions have been leveraged to
treat a variety of cancer subtypes in humans [5]. For
example, BRCAmutant cancers are specifically vulnerable
to PARP inhibition [6]. Similarly, in BRAF mutant can-
cers, combined inhibition of BRAF with other members
of the MAP kinase family, such as MAPK1-MAPK3 and
MAP2K1-MAP2K2, overcomes emergent mechanisms of
resistance [7].
Although genetic interactions have been systemati-

cally characterized in yeast, comprehensive studies in
human cells have not been feasible until recently [8].
This is in part due to the large number of gene combi-
nations (roughly 10 times larger than yeast), functional
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redundancy between and within gene families, and the
context specificity of interactions across many distinct cell
types. Recent efforts have enabled high-throughput inter-
rogation of genetic interactions in human cells through
combinatorial CRISPR-Cas9 screens [9–13]. The analy-
sis and interpretation of these screens, however, remains
challenging due to notable variation in guide activity, high
replicate variability, and differences in library design.
While existing algorithms have captured some of the

strongest interactions in combinatorial screens, they
fail to identify many that have been well-characterized.
These methods often assume a deterministic relationship
between guide or gene pairs and consider replicates, sam-
ples, or reagents independently without accounting for the
inherent variability and interdependence in combinatorial
screens. Moreover, each method has been developed for a
specific library format, and as combinatorial screens con-
tinue to expand and improve, there remains a strong need
for a scalable and systematic method to discover genetic
interactions from a variety of screen designs.
Here, we introduce GEMINI, a variational Bayes

approach to systematically infer genetic interactions from
pooled combinatorial CRISPR knockout screens of any
structure. GEMINI infers both reagent- and gene-level
effects using data from all samples, replicates, and
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reagents simultaneously. Our probabilistic approach accu-
rately infers effects attributed to single genes and models
a “combination” effect that captures any phenotype that
cannot be explained by the addition of two individual
gene effects. To account for the various definitions of
genetic interactions, we define multiple scoring systems
that relate the individual and combination effects to iden-
tify interactions exhibiting patterns of synthetic lethality
and recovery. We demonstrate a significant improvement
over current methods in identifying genetic interactions
and show broad applicability to a variety of combinatorial
CRISPR knockout screens.

Results
Overview of GEMINI
GEMINI is designed to infer genetic interactions from
pooled loss-of-function pairwise CRISPR knockout
screens across any number of samples (Methods and
Supplementary Methods in Additional file 1). A typ-
ical pooled pairwise CRISPR viability screen involves
the introduction of Cas9 derived from Streptococcus

pyogenes into mammalian cells, followed by the introduc-
tion of large lentiviral libraries of sgRNA pairs (Fig. 1a). In
some designs, an independent Cas9 from Staphylococcus
aureus is introduced as well [13]. During cell growth, sta-
bly transduced sgRNA pairs that lead to a loss of viability
are depleted from the cell population while those that
enhance viability increase in abundance. The abundance
of each sgRNA at the end of the experiment is determined
by next-generation sequencing.
GEMINI begins by calculating the log-fold changes

(LFCs) in sgRNA pair abundance between an early time
point (e.g., plasmid DNA) and a later time point (e.g.,
day 21 post-infection) and then models the observed
LFC as a function of sample-independent and sample-
dependent effects (Fig. 1b). Sample-independent effects
capture systematic screen variation, including CRISPR
guide (i.e., sgRNA) activity, promoter strength, batch
effect, or other sources of variation across screens that
might otherwise confound efforts to identify genetic inter-
actions. Sample-dependent effects include individual gene
effects, which are the phenotypes resulting from single

a

b

Fig. 1 The GEMINI framework for identification of genetic interactions from pairwise CRISPR knockout screens. a Combinatorial CRISPR libraries are
designed using unique guide pairs to target two genes. The library is then screened in a pooled format, and next-generation sequencing is
performed to obtain guide pair representations at early and late time points. b Observed log-fold changes (LFCs) of guide pairs are used to infer
effects across all samples (sample-independent) and effects within each sample (sample-dependent). Sample-dependent effects are then used to
score and identify significant genetic interactions
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gene perturbation, and a combination effect, namely the
phenotype resulting from an interaction between two
genes.
To infer sample-independent and sample-dependent

effects, we employ a coordinate ascent variational infer-
ence (CAVI) approach [14], for which closed-form coor-
dinate updates are obtained analytically to streamline
GEMINI’s iterative process. In a typical screen, each guide
is paired with at least one biological negative control
guide, which GEMINI uses to initialize the effect of an
individual gene to the median LFC of guide pairs that tar-
get both the gene and a negative control. In the absence
of negative controls, GEMINI instead uses the median
LFC of guide pairs targeting the gene paired with all
other genes to initialize the individual gene effect. The
parameters are then updated with information from all
samples and all guide pairs simultaneously until conver-
gence. Finally, the inferred effects are used to score the
relative strengths of lethality and recovery interactions
in each sample, using two scoring systems. The “strong”
system captures genetic interactions with high synergy,
where the combination effect of an interaction is much
greater than either of the individual effects. This can
also be thought of as identifying interactions with phe-
notypes that are “much more than additive.” The “sensi-
tive” measure captures interactions where the phenotype
of the pair provides either increased lethality or recov-
ery compared to the individual phenotypes. We define
a lethality interaction such that loss of either gene does
not lead to a significant decrease in viability whereas
loss of both genes does so. We define a recovery inter-
action such that loss of one gene or the other leads to
a decrease in viability and loss of both restores viabil-
ity. Given known non-interacting gene pairs, GEMINI can
also compute Benjamini-Hochberg-corrected false dis-
covery rates [15] (FDRs) to determine significant lethality
and recovery interactions, using a stringent threshold
of FDR < 0.01.

Performance evaluation
We primarily evaluated our method using data from the
Big Papi SynLet library, a combinatorial CRISPR knock-
out library in which 25 genes and 4 controls were targeted
in all possible pairwise combinations to identify synthetic
lethal interactions [13]. This dataset includes a set of
gene pairs that have been studied in orthogonal screens
[16], allowing for an unbiased assessment of GEMINI.
Additionally, the library was screened in 6 unique cell
lines, enabling the identification of context-specific and
context-independent interactions. The Big Papi SynLet
library, as well as other combinatorial knockout libraries
[10–12], sought to investigate genetic interactions within
particular gene families and were tailored to find syn-
thetic lethal interactions. Because of this inherent bias, we

present results on lethality scores. However, ourmethod is
also capable of identifying interactions that rescue viabil-
ity (in Additional file 1: Supplementary Information and
Figure S1 and in Additional file 2: Table S1).

Identification of essential genes and lethal interactions
The individual gene effects inferred by GEMINI for the
six cell lines in the Big Papi SynLet screen are shown
in Fig. 2a. We observe that the majority of individ-
ual effects exhibiting a dropout in LFC are associated
with genes that are characterized as essential for viability
in whole-genome single gene knockout CRISPR screens
using CERES [17]. Moreover, the individual gene effects
were highly correlated with CERES scores, with a high
average Pearson correlation across all cell lines (r = 0.83,
in Additional file 1: Figure S2).
We next calculated the “strong” interaction score that

compares the inferred combination effect to the individual
gene effects to determine the strength of a genetic inter-
action (“Methods” section). GEMINI identified context-
specific interactions such as MAPK1-MAPK3, which was
found as a strong lethal interaction only in RAS/RAF
mutated lines. The highest scoring cell line for MAPK1-
MAPK3 was A549 (“strong” interaction score = 1.38 and
FDR = 8.13 × 10−6), a lung cancer cell line harboring
a KRASG12S allele (Additional file 2: Table S1). Here, we
used gene pairs involving negative controls to compute
FDR (SupplementaryMethods in Additional file 1). GEM-
INI identified additional genetic interactions in A549 cells
that are supported by findings in the literature (Fig. 2b,
c). Normalized read counts for these interactions are
shown in Additional file 1: Figure S3. In particular, we
observed strong interactions between the anti-apoptotic
genes BCL2L1, BCL2L2, and MCL1 [18], as well as the
synthetic lethal relationship between the BRCA family
genes and PARP1 [6]. Although we detect more well-
known genetic interactions compared to the original
approach taken inNajm et al. [13] (dLFC), we note that the
MAP2K1-MAP2K2 relationship [19] identified by dLFC in
the A549 cell line was not strongly significant in GEMINI.
This is likely due to the fact that, despite an overwhelm-
ing majority of guides suggesting no interaction, dLFC is
highly sensitive to a single guide pair displaying a strong
phenotype (Additional file 1: Figure S4).
Overall, our findings suggest that GEMINI can accu-

rately infer individual and combination gene effects
and determine interactions that are specific to cellu-
lar contexts. In order to more comprehensively eval-
uate GEMINI, we next focused on lethal interactions
found across cell lines, with the notion that these inter-
actions are more likely to be context-independent and
therefore in agreement with other studies that have
characterized synthetic lethal interactions in various
contexts.
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Fig. 2 GEMINI accurately infers individual gene effects and identifies strong interactions. a GEMINI’s individual gene effects for all of Big Papi’s cell
lines are shown. Genes (x-axis) are sorted in ascending order according to the inferred individual gene effects (y-axis). Essential genes found by
CERES [17] are labeled as “Pan-essential.” b GEMINI “strong” scores (left) versus dLFC FDRs (right) for all gene pairs in the A549 lung cancer cell line
from the Big Papi screen. Pairs with GEMINI score above 1 have FDR less than 0.0001 (see Additional file 2: Table S1 for GEMINI’s scores and FDRs).
Experimentally or clinically supported interactions are highlighted in black. c GEMINI score, GEMINI FDR, and dLFC FDR for interactions shown in
black in part b. dLFC does not find the well-known interactions between BRCA family members and PARP1while GEMINI finds them highly significant

Comparisonwith previousmethods
To compare GEMINI performance to other methods, we
focused on lethal interactions identified in more than
half of the six cell lines screened in Big Papi. We com-
puted the “sensitive” interaction score that measures the
strength of the total depletion of a gene pair compared to
the individual gene effects (“Methods” section). We used
this more sensitive approach compared to the “strong”
interaction score to capture interactions that show any
modest synergy, as compared to the “strong” interac-
tion score that requires a high magnitude of synergy.
Gene pairs with significant lethal interaction scores (FDR
< 0.01) in more than three cell lines are depicted in
Fig. 3a. Normalized read counts for these interactions are
shown in Additional file 1: Figure S5. GEMINI captured
23 interactions of which 12 agreed with findings from
biochemical assays and clinical studies [13, 16, 20, 21]. We

also assessed the performance of alternative methods that
have been recently utilized to analyze pairwise CRISPR
knockout screens, namely dLFC [13], GImap [22], and π-
score [10]. Here, π-score generated z-scores and GImap
scores approximately followed a normal distribution and
thus were transformed to z-scores, and FDR was used for
dLFC due to its rank-based approach (detailed analysis in
Supplementary Information in Additional file 1). Lethal
interactions with z-scores < −2 or FDR < 0.1 in at least
four cell lines were considered significant. Noting that the
majority of interactions identified by GEMINI were exper-
imentally validated, these methods only found three of the
interactions (Fig. 3a, bottom).
To perform a more systematic comparison, we estab-

lished a set of “true positive” interactions by considering
relationships within functional groups [13] to be true and
included other identified relationships from a previously
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Fig. 3 Systematic evaluation of GEMINI. a Lethal interactions that were identified by GEMINI in at least four cell lines (Big Papi), colored according to
previous findings. Blue indicates interactions validated in Big Papi, green indicates interactions identified by a drug-RNAi screen, red indicates
interactions studied in other clinical or experimental contexts, and purple indicates interactions uniquely found by GEMINI that have not been
experimentally characterized. Only 3 interactions are found in 4 or more cell lines by other methods (bottom), representing significantly lower
sensitivity compared to GEMINI. b PR curve is depicted for GEMINI, π -score, GImap, and dLFC, where GEMINI achieves the highest PR-AUC (0.78)

established network of conserved lethal interactions [16],
resulting in 56 true positive interactions (Supplementary
Information in Additional file 1). Interactions involving
the negative control genesHPRT intron and 6T were used
as a “true negative” set (51 true negative interactions), and
CD81 was provided as a negative control gene to all meth-
ods. From these definitions, we computed precision-recall
(PR) and receiver operator characteristic (ROC) curves
for GEMINI, dLFC, GImap, and π-score, where inter-
actions found in at least four cell lines were considered
as positive predictions. To enable a fair comparison, we
transformed our “sensitive” interaction score to z-score
since GEMINI requires the “true negative” set to calcu-
late FDR. Thus, z-score was used for all methods, except
for dLFC for which FDR was used. GEMINI achieved
an area under the precision-recall curve (PR-AUC) of
0.78, while π-score, GImap, and dLFC achieved 0.61,
0.60, and 0.27, respectively (Fig. 3b). The area under the
receiver operator characteristic (ROC-AUC) for GEMINI
was at least 0.15 higher compared to these methods
(Additional file 1: Figure S6). We also observed that
GEMINI consistently outperforms existing methods in
identifying interactions common across varying numbers
of cell lines (Additional file 1: Figure S7).

Impact of the number of guides and cell lines on performance
We examined the performance of GEMINI under varying
numbers of guide pairs and samples. We randomly down-
sampled from the Big Papi dataset 20 times, selecting 2
guide pairs per gene pair. We increased the number of

guide pairs from 2 to 18 incrementally and generated 20
datasets for each specific number of pairs, resulting in a
total of 340 datasets. We were not able to run π-score
and GImap on these datasets since the implementations
of these methods were specifically designed for symmet-
ric screens that cover all guides in combination.Moreover,
dLFC performed worse than random chance in the com-
plete dataset (Additional file 1: Figure S6) and was thus
excluded from further assessment. GEMINI was appli-
cable to all tested datasets and was robust to variations
in guide pair and sample numbers. Specifically, using
the same procedure performed in the method compari-
son, we observed that GEMINI achieves higher PR-AUCs
and ROC-AUCs as the number of guide pairs increases
(Additional file 1: Figure S8). For instance, PR-AUC and
ROC-AUC improved by approximately 0.15 each when
the number of guide pairs increased from 2 to 18.
We next investigated the extent to which GEMINI ben-

efits from the joint analysis of samples. We emphasize
that other methods can only be applied to single samples
or replicates. GEMINI was run individually on each sam-
ple, and then jointly on all samples. Joint analysis of the
data better identified interactions, resulting in an increase
of PR-AUC and ROC-AUC by 0.07 and 0.10, respectively
(Additional file 1: Figure S9).

Impact of library design on performance
Recognizing that the Big Papi library covers a small sub-
set of genes and is designed differently from other existing
combinatorial screens, we also evaluated our approach
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using data from CDKO [11], a combinatorial library con-
sisting of 490,000 guide pairs that targets 21,321 gene
pairs. This library includes 207 genes in an all-by-all for-
mat, only uses S. pyogenesCas9, and was screened in K562
leukemia cells. Since there is no comprehensive validation
for interactions in CDKO to construct an unbiased true
positive set, we used SynLethDB [23], a extensive database
that contains synthetic lethal pairs identified experimen-
tally and computationally across model organisms. Treat-
ing SynLethDB interactions as context-independent, we
found 90 synthetic lethal pairs common between Syn-
LethDB and CDKO, which we used as a true positive set.
We also randomly divided the 79 non-targeting negative
control guides in CDKO into group 1 with 39 guides and
group 2 with 40 guides, where group 1 was used as a nega-
tive control and group 2 was treated as a gene that should
not synergize with other genes, resulting in a set of 207
true negative pairs. Given these validation sets, we calcu-
lated the ROC-AUC and PR-AUC for GEMINI, GImap,
and π-score (z-scores calculated for all methods). This
was performed analogously to our previous assessment
using Big Papi, but treating any interactions found in K562
as positive predictions. We could not run dLFC as there
is no source code available and only its final results are
reported for Big Papi. GEMINI achieved an ROC-AUC
of 0.79 and PR-AUC of 0.80, while GImap’s values were
0.71 and 0.68, and π-score’s values were 0.49 and 0.32
(Additional file 1: Figure S10). We have shown that GEM-
INI performance improves as the number of cell lines
increases (Additional file 1: Figure S9). Thus, we expect
that GEMINI performance will show continued improve-
ment over existing methods in large libraries screened
across multiple cell lines.
Although all published combinatorial screens include

biological negative controls that are paired with all other
guides in the library, we also assessed GEMINI perfor-
mance in the case where no negative control is specified.
Alternative methods are all dependent on the inclusion
of negative control guides and thus are not applicable
for this assessment. In the absence of negative control to
initialize the individual gene effects in CAVI approach,
GEMINI uses the median LFC of all guide pairs targeting
one gene paired with all other genes. We emphasize that
such initialization is not recommended for non-all-by-all
screen designs due to the limited number of gene pairs
including each gene. In the case of Big Papi, we compared
the results based on this initialization to those achieved
when a negative control was given. Using the validation set
described previously for Big Papi, we observed that GEM-
INI consistently performs better when a negative control
is available. Specifically, the ROC-AUC and PR-AUC val-
ues are 0.15 and 0.1 lower if a negative control is not
provided (Additional file 1: Figure S11a). Using the vali-
dation set described previously for CDKO, we observed a

less of a decrease in performance (0.05 and 0.07 in ROC-
AUC and PR-AUC, in Additional file 1: Figure S11b), but
still saw consistent outperformance using negative con-
trol. This is mainly due to the large size of CDKO screen,
allowing GEMINI to utilize more observations to improve
its estimation of sample-dependent effects.

Cross-screen analysis
In addition to Big Papi and CDKO, we applied GEM-
INI to other publicly available pairwise CRISPR knockout
screens, Zhao-Mali [12] and Shen-Mali [10]. Despite dif-
ferences in data quality and library design across screens,
the CAVI algorithm that was implemented in GEMINI
rapidly achieved convergence for all screens, with the
most drastic changes in mean absolute error occurring
within the first 5 iterations (Additional file 1: Figure S12).
To further assess the obtained results, we focused on
interactions that were found in multiple screens. We cal-
culated the “strong” interaction score for all gene pairs in
each screen and selected the strongest interaction scores
across all cell lines if the screen was performed in more
than one cell line. We then ranked gene pairs according to
these scores and identified the top 10% ranked gene pairs
found in two or more screens (Fig. 4a). Note that only 190
gene pairs were in common across any two screens while
Zhao-Mali had no pairs in common with other screens
and thus was not considered in this analysis. Across all
three screens, the well-known BRCA2-PARP1 interaction
was identified [6]. Overall, GEMINI found 11 interac-
tions of which 7 were previously experimentally validated
[6, 13, 21, 24, 25] or previously identified as a synthetic
lethality in SynLethDB [23]. We also evaluated these
interactions using STRING [26], a database of known
and predicted protein-protein interactions. We retrieved
STRING evidence scores of the 11 interactions (between
0 and 1), which reflects the likelihood of an interaction
being biologically true given experimental and compu-
tational evidence. Recognizing that STRING might have
high levels of false positives, we found 8 interactions (out
of 11), with the evidence score above 0.5 (Fig. 4b). This
list includes all the 7 interactions that were highlighted in
Fig. 4a. Our findings indicate that GEMINI is applicable
to various screen formats and enables a systematic inte-
gration of combinatorial CRISPR knockout screens for the
discovery of novel genetic interactions.

Discussion
Reagent variability
Although GEMINI accounts for different sources of vari-
ation in combinatorial CRISPR knockout screens and
improves upon existing methods, we observed certain
patterns of variation in guide activity that might lead
to incorrect inferences. In particular, if guides target-
ing a gene pair showed extreme inconsistency (i.e., high
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Fig. 4 GEMINI identifies interactions common across different combinatorial knockout screens. a Common interactions identified by GEMINI across
Big Papi, Shen-Mali, and CDKO screens are shown. Any gene pairs in the top 10% of ranks in at least two screens are shown in red. If a gene pair was
not included in the screen, it was labeled as “Not included” (gray). Experimentally or clinically supported interactions are shown in bold, and those
identified in SynLethDB are colored by green. b Common interactions across screens are shown in a network where edge weight is adjusted based
on evidence scores from STRING. Only interactions with evidence scores above 0.5 are shown. Interactions supported by experimental or clinical
findings are emphasized with black edges, and those supported by SynLethDB with green edges

reagent variability), GEMINI’s estimate of individual and
combination gene effects became less reliable (Supple-
mentary Information, Figure S13, and Figure S14 in Addi-
tional file 1). In the two screens with the highest biological
replicate correlation, CDKO and Big Papi, we observed
such reagent variability in 14.87% and 13.33% of the
most significant hits in each screen (top 5%), respectively.
For these high-variability pairs, the standard deviation of
LFCs for guides targeting each gene pair was, on average
across cell lines, greater than 1.
Previous studies suggest that the observed reagent

variability might correspond to the properties of guide
sequence and the functional impact of a guide on the
genetic product rather than a systematic variation that
can be captured across samples [27, 28]. If the variation
is characterized before the analysis of a combinatorial
screen, this information can be used as a prior in GEM-
INI to downweight or upweight guides and improve per-
formance (Supplementary Information, Figure S15, and
Figure S16 in Additional file 1). In the absence of a detailed
understanding of reagent variability, we recommend the
use of the default parameters that assume a modest confi-
dence on all guide activity.

Copy number variation
Previous studies have corrected for copy number varia-
tion to improve the estimation of gene effects in single
knockout CRISPR screens [17, 29]. However, in the case
of dual knockout CRISPR screens, published datasets are
limited both by the number of genes and cell lines with
copy number alterations, and therefore, it is not possible

to systematically evaluate any copy number effect in com-
binatorial screen. In anticipation of larger datasets, pre-
processing methods designed for single knockout screens
[30, 31] can be generalized to combinatorial screens to
remove this effect from LFCs. GEMINI will be able to use
these corrected LFCs as an input, without any need for
modifications to the inference and scoring procedures.

Application to other pairwise screens
In evaluating GEMINI’s broader utility, we applied our
method to other dropout-based pairwise screens. In par-
ticular, we assessed GEMINI’s performance in a pooled
combinatorial CRISPRi dropout screen [22]. Although
GEMINI identified the majority of interactions described
by the authors, we suspect that the predicted interactions
include many false positives (Additional file 2: Table S1).
This is likely due to an exacerbation of the previously
described reagent variability that we observe at a sig-
nificantly higher rate in combinatorial CRISPRi screens.
Specifically, we found that among the top 5% of synergistic
hits in the CRISPRi screen, 34.61% of gene combina-
tions showed significant variability (standard deviation
> 1). We envision that a better understanding of reagent
variability could, in addition to improving GEMINI per-
formance, increase the breadth of applicability of our
probabilistic approach beyond knockout screens.

Conclusions
The emergence of combinatorial CRISPR screening tech-
nology has provided new tools to uncover novel genetic
interactions and therapeutic opportunities in disease. We
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developed GEMINI to jointly analyze the output from
pairwise knockout screens to identify genetic interactions,
while accounting for variability in screen format, such
as guide activity, promoter strength, and replicate vari-
ability. Our probabilistic approach uncovers many well-
characterized interactions from these screens that were
not otherwise found by existing methods.We also showed
that GEMINI is widely applicable to a variety of library
formats and that its performance improves as the number
of guides or samples increases. Finally, we demonstrated
that, given a better understanding of reagent behavior
and copy number variation, GEMINI can incorporate
this information to improve the identification of genetic
interactions.
As the use of combinatorial screening becomes

more widespread, we anticipate that, because our
approach makes no assumptions about the screen format,
researchers can analyze new screens in a variety of for-
mats. For instance, it could be possible to design more
efficient libraries to investigate specific genetic interac-
tions without the need for a large all-by-all guide pair
library. Moreover, in libraries screened across tens to hun-
dreds of cell lines, GEMINI will integrate information
across all samples to better identify genetic interactions
and enable the creation of an interaction map to drive
target discovery in cancer and other diseases. GEMINI is
available as an open-source R package at https://github.
com/sellerslab/gemini.

Methods
Model
To estimate sample-independent and sample-dependent
effects from LFCs (see Supplementary Methods in Addi-
tional file 1 for the calculation of LFCs), we formulate
the effects in a Bayesian framework and apply a varia-
tional inference method. We later explain the scoring and
identification of lethality and recovery interactions.
We assume that the observed log-fold changes can

be broken down into three latent effects: the individual
effects of each guide in a pair and the effect of two guides
in combination. All three effects can be further broken
down into the product of two effects: sample-independent
and sample-dependent.
Specifically, we define the following notation:
g and h = genes g and h being targeted simultaneously;
gi and hj = guide i and guide j targeting genes g and h,
respectively;
l = one sample; and
Dgi,hj ,l = the observed LFC of the guide pair (gi, hj)
in sample l.

We then model the LFC as
Dgi,hj ,l ∼ N (xgiyg,l + xhjyh,l + xgi,hj sg,h,l, τ

−1
gi,hj ,l).

We explain each latent effect, the assumptions, and the
priors chosen in detail below.

Sample-independent effects
We let x· denote the sample-independent effects of guides.
For guide pair (gi, hj), there are three sample-independent
effects: the effect of guide gi (xgi ), the effect of guide
hj (xhj ), and the effect of the combination (xgi,hj ). The
sample-independent effects include any systematic shifts
that may exist between two guides, guide efficacy, guide
concordance across samples, and other screen variations.
We emphasize that x· represents a mixture of sample-
independent effects and should not be interpreted as
guide efficacy. We assume common normal priors on all
sample-independent effects, but users can choose to set
different priors on each effect.

x· ∼ N
(
μx, σ 2

x
)
.

We recognize that xgi,hj can be dependent on xgi and
xhi , but ignore such dependency since it is not straight-
forward to model this relationship. We instead let the
observed LFCs across many samples predict these vari-
ables. By default, we impose amoderate prior, withμx = 1
and σx = 1. However, in the event of low sample sizes
(< 3 samples), a stronger prior should be specified (e.g.,
σx = 0.1) to shrink the estimated effects more towards 1
and reduce false positives.

Sample-dependent effects
We let y· and s· denote the sample-dependent individual
and combination effects, respectively. These include any
context-specific effects that may exist in each sample. We
assume normal priors for sample-dependent effects, with
a common prior for gene-level effects and a separate prior
for the combination effects, but users can choose to set
different priors on each effect.

y· ∼ N
(
μy, σ 2

y
)
, s· ∼ N

(
μs, σ 2

s
)
.

In this case, we assume that prior means, μy and μs, are
0 to reflect the expectation that the majority of effects are
close to 0. We set σ 2

y and σ 2
s equal to 10 to reflect limited

prior knowledge of sample-dependent effects.

Precision of observed data
We introduce τgi,hj ,l ∼ �(αgi ,hj ,l,βgi,hj ,l) to model the pre-
cision of observed LFC for each guide pair in sample l.
We assume the prior follows a Gamma distribution and
use replicates to estimate the parameters of this distribu-
tion. Direct empirical estimation of the prior parameters
can be poor in experiments with a small number of repli-
cates. To overcome this challenge in single guide libraries,
previous studies [32, 33] suggested a smoothed version of
empirical estimates based on all guides in each sample.
Such methods could be directly applied to combinatorial
screens by treating guide pairs as single guides. On the

https://github.com/sellerslab/gemini
https://github.com/sellerslab/gemini
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other hand, recent combinatorial knockout screens [13]
generate highly correlated replicates (Pearson correlation
≥ 0.9, calculated using replicate counts) that lead to small
empirical estimates. As a default, we use direct empirical
estimation of the prior parameters, but a smoothed esti-
mate of the parameters is also available in GEMINI (see
Supplementary Methods in Additional file 1 for details).
We apply coordinate ascent variational inference [14] to

infer the posterior distributions of x, y, s, and τ . The varia-
tional distribution is assumed to factorize over each latent
variable, and coordinate updates are obtained accordingly.
Details for computing updates are described in Supple-
mentary Methods in Additional file 1.

Lethality and recovery interactions
To assess interactions, we relate the individual effects
to the non-additive effect through two scoring systems:
“strong” and “sensitive” lethality and recovery. These pro-
posed definitions of interactions are well-described and
have been used to identify genetic interactions in yeast
and other model organisms [1]. However, recognizing that
the definitions of genetic interactions can widely vary,
users can utilize the inferred sample-dependent effects to
define new scoring systems.

Strong lethality and recovery
To characterize this relationship, we compare the
expected values of s· to y· after gene and gene pair-level
inference. The expected values are shown by s· and y·,
acknowledging a misuse of notation. For every gene pair
in sample l, we compute the score

|sg,h,l| − max(|yg,l|, |yh,l|),
which reflects the strength of the combination effect
(i.e., |sg,h,l|) compared to the individual gene effects (i.e.,
max(|yg,l|, |yh,l|)). In other words, we capture interactions
with phenotypes that are “much more than additive” and
primarily driven by the combination effect. Larger posi-
tive values indicate a stronger lethality if sg,h,l is negative
or a stronger recovery if sg,h,l is positive. We note that our
strong recovery definition may also capture other classes
of positive growth interactions where the individual gene
effects do not result in loss of viability. Our definitions of
strong lethality and recovery also may not identify cases
with amodest difference between gene pair and individual
gene effects. We thus introduce the following definitions
to capture a wider range of possible lethality and recovery
relationships.

Sensitive lethality and recovery
Lethality relationships are scored according to

min(yg,l, yh,l) − (yg,l + yh,l + sg,h,l)
subject to yg,l and yh,l > cλ

where c is the 0.01-quantile of y values in sample l, and
λ = 0.5 by default. This constraint removes gene pairs
of which at least one gene is more than 50% depleted,
compared to genes with the strongest depletion in the
screen. We can also define c in relation to positive con-
trol genes, for instance the median depletion caused by
known essential genes. The score value compares the total
effect of the gene pair (i.e., yg,l + yh,l + sg,h,l) to the most
lethal individual gene (i.e., min(yg,l, yh,l)), with positive
values presenting stronger effects. In other words, this will
capture the additional dropout that results from a com-
bination of two genes, where the killing effect of the pair
cannot be attributed to the knockout of either gene indi-
vidually. In addition, recovery effects are scored similar to
lethality, but in the opposite direction with a constraint
that requires at least one gene to independently exhibit
notable viability effect.

yg,l + yh,l + sg,h,l − min(yg,l, yh,l)
subject to yg,l or yh,l < cλ

If a set of non-interacting gene pairs is known, GEM-
INI uses this set to define a null distribution for the
above scores, and calculates p values and FDR for lethal-
ity and recovery interactions. Details are explained in
Supplementary Methods in Additional file 1.
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