
Weber et al. Genome Biology (2019) 20:125
https://doi.org/10.1186/s13059-019-1738-8
REVIEW Open Access
Essential guidelines for computational

method benchmarking

Lukas M. Weber1,2, Wouter Saelens3,4, Robrecht Cannoodt3,4, Charlotte Soneson1,2,8, Alexander Hapfelmeier5,
Paul P. Gardner6, Anne-Laure Boulesteix7, Yvan Saeys3,4* and Mark D. Robinson1,2*
Abstract

In computational biology and other sciences, researchers are frequently faced with a choice between several computational
methods for performing data analyses. Benchmarking studies aim to rigorously compare the performance of different
methods using well-characterized benchmark datasets, to determine the strengths of each method or to
provide recommendations regarding suitable choices of methods for an analysis. However, benchmarking
studies must be carefully designed and implemented to provide accurate, unbiased, and informative results.
Here, we summarize key practical guidelines and recommendations for performing high-quality benchmarking
analyses, based on our experiences in computational biology.
Introduction
Many fields of computational research are characterized
by a growing number of available methods for data ana-
lysis. For example, at the time of writing, almost 400
methods are available for analyzing data from single-cell
RNA-sequencing experiments [1]. For experimental re-
searchers and method users, this represents both an op-
portunity and a challenge, since method choice can
significantly affect conclusions.
Benchmarking studies are carried out by computa-

tional researchers to compare the performance of differ-
ent methods, using reference datasets and a range of
evaluation criteria. Benchmarks may be performed by
authors of new methods to demonstrate performance
improvements or other advantages; by independent
groups interested in systematically comparing existing
methods; or organized as community challenges. ‘Neu-
tral’ benchmarking studies, i.e., those performed inde-
pendently of new method development by authors
without any perceived bias, and with a focus on the
comparison itself, are especially valuable for the research
community [2, 3].
© The Author(s). 2019 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze

* Correspondence: yvan.saeys@ugent.be; mark.robinson@imls.uzh.ch
3Data Mining and Modelling for Biomedicine, VIB Center for Inflammation
Research, 9052 Ghent, Belgium
1Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich,
Switzerland
Full list of author information is available at the end of the article
From our experience conducting benchmarking stud-
ies in computational biology, we have learned several
key lessons that we aim to synthesize in this review. A
number of previous reviews have addressed this topic
from a range of perspectives, including: overall commen-
taries and recommendations on benchmarking design [2,
4–9]; surveys of design practices followed by existing
benchmarks [7]; the importance of neutral benchmark-
ing studies [3]; principles for the design of real-data
benchmarking studies [10, 11] and simulation studies
[12]; the incorporation of meta-analysis techniques into
benchmarking [13–16]; the organization and role of
community challenges [17, 18]; and discussions on
benchmarking design for specific types of methods [19,
20]. More generally, benchmarking may be viewed as a
form of meta-research [21].
Our aim is to complement previous reviews by provid-

ing a summary of essential guidelines for designing, per-
forming, and interpreting benchmarks. While all
guidelines are essential for a truly excellent benchmark,
some are more fundamental than others. Our target
audience consists of computational researchers who are
interested in performing a benchmarking study, or who
have already begun one. Our review spans the full ‘pipe-
line’ of benchmarking, from defining the scope to best
practices for reproducibility. This includes crucial ques-
tions regarding design and evaluation principles: for ex-
ample, using rankings according to evaluation metrics to
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-019-1738-8&domain=pdf
http://orcid.org/0000-0002-3048-5518
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yvan.saeys@ugent.be
mailto:mark.robinson@imls.uzh.ch

Weber et al. Genome Biology (2019) 20:125 Page 2 of 12
identify a set of high-performing methods, and then
highlighting different strengths and tradeoffs among
these.
The review is structured as a series of guidelines

(Fig. 1), each explained in detail in the following sec-
tions. We use examples from computational biology;
however, we expect that most arguments apply equally
to other fields. We hope that these guidelines will con-
tinue the discussion on benchmarking design, as well as
assisting computational researchers to design and imple-
ment rigorous, informative, and unbiased benchmarking
analyses.

Defining the purpose and scope
The purpose and scope of a benchmark should be clearly
defined at the beginning of the study, and will fundamentally
guide the design and implementation. In general, we can de-
fine three broad types of benchmarking studies: (i) those by
method developers, to demonstrate the merits of their ap-
proach (e.g., [22–26]); (ii) neutral studies performed to sys-
tematically compare methods for a certain analysis, either
conducted directly by an independent group (e.g., [27–38])
or in collaboration with method authors (e.g., [39]); or (iii)
those organized in the form of a community challenge, such
as those from the DREAM [40–44], FlowCAP [45, 46],
CASP [47, 48], CAMI [49], Assemblathon [50, 51], MAQC/
SEQC [52–54], and GA4GH [55] consortia.
A neutral benchmark or community challenge should

be as comprehensive as possible, although for any bench-
mark there will be tradeoffs in terms of available re-
sources. To minimize perceived bias, a research group
conducting a neutral benchmark should be approximately
equally familiar with all included methods, reflecting
Summary of guidelines

The guidelines in this review can be summarized
Each recommendation is discussed in more deta

1. Define the purpose and scope of the benc
2. Include all relevant methods.
3. Select (or design) representative datasets
4. Choose appropriate parameter values an
5. Evaluate methods according to key quant
6. Evaluate secondary measures including c

friendliness, installation procedures, and
7. Interpret results and provide recommenda

perspectives.
8. Publish results in an accessible format.
9. Design the benchmark to enable future ex
10. Follow reproducible research best practic

available.

Fig. 1 Summary of guidelines
typical usage of the methods by independent researchers
[3]. Alternatively, the group could include the original
method authors, so that each method is evaluated under
optimal conditions; methods whose authors decline to
take part should be reported. In either case, bias due to fo-
cusing attention on particular methods should be
avoided—for example, when tuning parameters or fixing
bugs. Strategies to avoid these types of biases, such as the
use of blinding, have been previously proposed [10].
By contrast, when introducing a new method, the focus

of the benchmark will be on evaluating the relative merits
of the new method. This may be sufficiently achieved with
a less extensive benchmark, e.g., by comparing against a
smaller set of state-of-the-art and baseline methods. How-
ever, the benchmark must still be carefully designed to
avoid disadvantaging any methods; for example, exten-
sively tuning parameters for the new method while using
default parameters for competing methods would result in
a biased representation. Some advantages of a new
method may fall outside the scope of a benchmark; for ex-
ample, a new method may enable more flexible analyses
than previous methods (e.g., beyond two-group compari-
sons in differential analyses [22]).
Finally, results should be summarized in the context of

the original purpose of the benchmark. A neutral bench-
mark or community challenge should provide clear
guidelines for method users, and highlight weaknesses in
current methods so that these can be addressed by
method developers. On the other hand, benchmarks per-
formed to introduce a new method should discuss what
the new method offers compared with the current state-
of-the-art, such as discoveries that would otherwise not
be possible.
in the following set of recommendations.
il in the corresponding section in the text.

hmark.

.
d software versions.
itative performance metrics.
omputational requirements, user-

documentation quality.
tions from both user and method developer

tensions.
es, by making code and data publicly

Weber et al. Genome Biology (2019) 20:125 Page 3 of 12
Selection of methods
The selection of methods to include in the benchmark
will be guided by the purpose and scope of the study. A
neutral benchmark should include all available methods
for a certain type of analysis. In this case, the publica-
tion describing the benchmark will also function as a
review of the literature; a summary table describing the
methods is a key output (e.g., Fig. 2 in [27] or Table 1
in [31]). Alternatively, it may make sense to include
only a subset of methods, by defining inclusion criteria:
for example, all methods that (i) provide freely available
software implementations, (ii) are available for com-
monly used operating systems, and (iii) can successfully
be installed without errors following a reasonable
amount of trouble-shooting. Such criteria should be
chosen without favoring any methods, and exclusion of
any widely used methods should be justified. A useful
strategy can be to involve method authors within the
process, since they may provide additional details on
optimal usage. In addition, community involvement can
lead to new collaborations and inspire future method
development. However, the overall neutrality and
Table 1 Summary of our views regarding ‘how essential’ each princ
key tradeoffs and potential pitfalls relating to each principle

Principle (see Fig. 1) How
essential?a

Tradeoffs

1. Defining the purpose and
scope

+++ How comprehensive the
benchmark should be

2. Selection of methods +++ Number of methods to include

3. Selection (or design) of
datasets

+++ Number and types of datasets t
include

4. Parameter and software
versions

++ Amount of parameter tuning

5. Evaluation criteria: key
quantitative performance
metrics

+++ Number and types of
performance metrics

6. Evaluation criteria: secondary
measures

++ Number and types of
performance metrics

7. Interpretation, guidelines,
and recommendations

++ Generality versus specificity
of recommendations

8. Publication and reporting of
results

+ Amount of resources to dedicat
to building online resources

9. Enabling future extensions ++ Amount of resources to dedicat
to ensuring extensibility

10. Reproducible research best
practices

++ Amount of resources to dedicat
to reproducibility

aThe higher the number of plus signs, the more central the principle is to the evalu
balance of the resulting research team should be main-
tained. Finally, if the benchmark is organized as a com-
munity challenge, the selection of methods will be
determined by the participants. In this case, it is im-
portant to communicate the initiative widely—for
example, through an established network such as
DREAM challenges. However, some authors may
choose not to participate; a summary table document-
ing non-included methods should be provided in this
case.
When developing a new method, it is generally sufficient

to select a representative subset of existing methods to
compare against. For example, this could consist of the
current best-performing methods (if known), a simple
‘baseline’ method, and any methods that are widely used.
The selection of competing methods should ensure an ac-
curate and unbiased assessment of the relative merits of
the new approach, compared with the current state-of-
the-art. In fast-moving fields, for a truly excellent bench-
mark, method developers should be prepared to update
their benchmarks or design them to easily allow exten-
sions as new methods emerge.
iple is for a truly excellent benchmark, along with examples of

Potential pitfalls

Scope too broad: too much work given available resources
Scope too narrow: unrepresentative and possibly misleading results

Excluding key methods

o Subjectivity in the choice of datasets: e.g., selecting datasets that
are unrepresentative of real-world applications
Too few datasets or simulation scenarios
Overly simplistic simulations

Extensive parameter tuning for some methods while using default
parameters for others (e.g., competing methods)

Subjectivity in the choice of metrics: e.g., selecting metrics that do
not translate to real-world performance
Metrics that give over-optimistic estimates of performance
Methods may not be directly comparable according to individual
metrics (e.g., if methods are designed for different tasks)

Subjectivity of qualitative measures such as user-friendliness, installa-
tion procedures, and documentation quality
Subjectivity in relative weighting between multiple metrics
Measures such as runtime and scalability depend on processor speed
and memory

Performance differences between top-ranked methods may be minor
Different readers may be interested in different aspects of
performance

e Online resources may not be accessible (or may no longer run)
several years later

e Selection of methods or datasets for future extensions may be
unrepresentative (e.g., due to requests from method authors)

e Some tools may not be compatible or accessible several years later

ation

Weber et al. Genome Biology (2019) 20:125 Page 4 of 12
Selection (or design) of datasets
The selection of reference datasets is a critical design
choice. If suitable publicly accessible datasets cannot be
found, they will need to be generated or constructed, either
experimentally or by simulation. Including a variety of data-
sets ensures that methods can be evaluated under a wide
range of conditions. In general, reference datasets can be
grouped into two main categories: simulated (or synthetic)
and real (or experimental).
Simulated data have the advantage that a known true

signal (or ‘ground truth’) can easily be introduced; for
example, whether a gene is differentially expressed.
Quantitative performance metrics measuring the ability
to recover the known truth can then be calculated. How-
ever, it is important to demonstrate that simulations
accurately reflect relevant properties of real data, by
inspecting empirical summaries of both simulated and
real datasets (e.g., using automated tools [57]). The set
of empirical summaries to use is context-specific; for ex-
ample, for single-cell RNA-sequencing, dropout profiles
and dispersion-mean relationships should be compared
[29]; for DNA methylation, correlation patterns among
neighboring CpG sites should be investigated [58]; for
comparing mapping algorithms, error profiles of the se-
quencing platforms should be considered [59]. Simpli-
fied simulations can also be useful, to evaluate a new
method under a basic scenario, or to systematically test
aspects such as scalability and stability. However, overly
simplistic simulations should be avoided, since these will
not provide useful information on performance. A fur-
ther advantage of simulated data is that it is possible to
generate as much data as required; for example, to study
variability and draw statistically valid conclusions.
Experimental data often do not contain a ground

truth, making it difficult to calculate performance met-
rics. Instead, methods may be evaluated by comparing
them against each other (e.g., overlap between sets of
detected differential features [23]), or against a current
widely accepted method or ‘gold standard’ (e.g., manual
gating to define cell populations in high-dimensional cy-
tometry [31, 45], or fluorescence in situ hybridization to
validate absolute copy number predictions [6]). In the
context of supervised learning, the response variable to
be predicted is known in the manually labeled training
and test data. However, individual datasets should not be
overused, and using the same dataset for both method
development and evaluation should be avoided, due to
the risk of overfitting and overly optimistic results [60,
61]. In some cases, it is also possible to design experi-
mental datasets containing a ground truth. Examples in-
clude: (i) ‘spiking in’ synthetic RNA molecules at known
relative concentrations [62] in RNA-sequencing experi-
ments (e.g., [54, 63]), (ii) large-scale validation of gene
expression measurements by quantitative polymerase
chain reaction (e.g., [54]), (iii) using genes located on sex
chromosomes as a proxy for silencing of DNA methyla-
tion status (e.g., [26, 64]), (iv) using fluorescence-
activated cell sorting to sort cells into known subpopula-
tions prior to single-cell RNA-sequencing (e.g., [29, 65,
66]), or (v) mixing different cell lines to create ‘pseudo-
cells’ [67]. However, it may be difficult to ensure that the
ground truth represents an appropriate level of variabil-
ity—for example, the variability of spiked-in material, or
whether method performance on cell line data is rele-
vant to outbred populations. Alternatively, experimental
datasets may be evaluated qualitatively, for example, by
judging whether each method can recover previous dis-
coveries, although this strategy relies on the validity of
previous results.
A further technique is to design ‘semi-simulated’ data-

sets that combine real experimental data with an ‘in
silico’ (i.e., computational) spike-in signal; for example,
by combining cells or genes from ‘null’ (e.g., healthy)
samples with a subset of cells or genes from samples ex-
pected to contain a true differential signal (examples in-
clude [22, 68, 69]). This strategy can create datasets with
more realistic levels of variability and correlation, to-
gether with a ground truth.
Overall, there is no perfect reference dataset, and the

selection of appropriate datasets will involve tradeoffs,
e.g., regarding the level of complexity. Both simulated
and experimental data should not be too ‘simple’ (e.g.,
two of the datasets in the FlowCAP-II challenge [45]
gave perfect performance for several algorithms) or too
‘difficult’ (e.g., for the third dataset in FlowCAP-II, no al-
gorithms performed well); in these situations, it can be
impossible to distinguish performance. In some cases,
individual datasets have also been found to be unrepre-
sentative, leading to over-optimistic or otherwise biased
assessment of methods (e.g., [70]). Overall, the key to
truly excellent benchmarking is diversity of evaluations,
i.e., using a range of metrics and datasets that span the
range of those that might be encountered in practice, so
that performance estimates can be credibly extrapolated.
Parameters and software versions
Parameter settings can have a crucial impact on per-
formance. Some methods have a large number of param-
eters, and tuning parameters to optimal values can
require significant effort and expertise. For a neutral
benchmark, a range of parameter values should ideally
be considered for each method, although tradeoffs need
to be considered regarding available time and computa-
tional resources. Importantly, the selection of parameter
values should comply with the neutrality principle, i.e.,
certain methods should not be favored over others
through more extensive parameter tuning.

Weber et al. Genome Biology (2019) 20:125 Page 5 of 12
There are three major strategies for choosing parame-
ters. The first (and simplest) is to use default values for
all parameters. Default parameters may be adequate for
many methods, although this is difficult to judge in ad-
vance. While this strategy may be viewed as too simplis-
tic for some neutral benchmarks, it reflects typical
usage. We used default parameters in several neutral
benchmarks where we were interested in performance
for untrained users [27, 71, 72]. In addition, for [27], due
to the large number of methods and datasets, total run-
time was already around a week using 192 processor
cores, necessitating judgment in the scope of parameter
tuning. The second strategy is to choose parameters
based on previous experience or published values. This
relies on familiarity with the methods and the literature,
reflecting usage by expert users. The third strategy is to
use a systematic or automated parameter tuning proced-
ure—for example, a ‘grid search’ across ranges of values
for multiple parameters or techniques such as cross-
validation (e.g., [30]). The strategies may also be com-
bined, e.g., setting non-critical parameters to default
values and performing a grid search for key parameters.
Regardless, neutrality should be maintained: comparing
methods with the same strategy makes sense, while com-
paring one method with default parameters against an-
other with extensive tuning makes for an unfair
comparison.
For benchmarks performed to introduce a new

method, comparing against a single set of optimal par-
ameter values for competing methods is often sufficient;
these values may be selected during initial exploratory
work or by consulting documentation. However, as out-
lined above, bias may be introduced by tuning the pa-
rameters of the new method more extensively. The
parameter selection strategy should be transparently dis-
cussed during the interpretation of the results, to avoid
the risk of over-optimistic reporting due to expending
more ‘researcher degrees of freedom’ on the new
method [5, 73].
Software versions can also influence results, especially

if updates include major changes to methodology (e.g.,
[74]). Final results should generally be based on the lat-
est available versions, which may require re-running
some methods if updates become available during the
course of a benchmark.

Evaluation criteria: key quantitative performance metrics
Evaluation of methods will rely on one or more quanti-
tative performance metrics (Fig. 2a). The choice of
metric depends on the type of method and data. For ex-
ample, for classification tasks with a ground truth, met-
rics include the true positive rate (TPR; sensitivity or
recall), false positive rate (FPR; 1 – specificity), and false
discovery rate (FDR). For clustering tasks, common
metrics include the F1 score, adjusted Rand index, nor-
malized mutual information, precision, and recall; some
of these can be calculated at the cluster level as well as
averaged (and optionally weighted) across clusters (e.g.,
these metrics were used to evaluate clustering methods
in our own work [28, 31] and by others [33, 45, 75]).
Several of these metrics can also be compared visually to
capture the tradeoff between sensitivity and specificity,
e.g., using receiver operating characteristic (ROC) curves
(TPR versus FPR), TPR versus FDR curves, or preci-
sion–recall (PR) curves (Fig. 2b). For imbalanced data-
sets, PR curves have been shown to be more informative
than ROC curves [76, 77]. These visual metrics can also
be summarized as a single number, such as area under
the ROC or PR curve; examples from our work include
[22, 29]. In addition to the tradeoff between sensitivity
and specificity, a method’s ‘operating point’ is important;
in particular, whether the threshold used (e.g., 5% FDR)
is calibrated to achieve the specified error rate. We often
overlay this onto TPR–FDR curves by filled or open cir-
cles (e.g., Fig. 2b, generated using the iCOBRA package
[56]); examples from our work include [22, 23, 25, 78].
For methods with continuous-valued output (e.g., ef-

fect sizes or abundance estimates), metrics include the
root mean square error, distance measures, Pearson cor-
relation, sum of absolute log-ratios, log-modulus, and
cross-entropy. As above, the choice of metric depends
on the type of method and data (e.g., [41, 79] used cor-
relation, while [48] used root mean square deviation).
Further classes of methods include those generating
graphs, phylogenetic trees, overlapping clusters, or dis-
tributions; these require more complex metrics. In some
cases, custom metrics may need to be developed (e.g.,
we defined new metrics for topologies of developmental
trajectories in [27]). When designing custom metrics, it
is important to assess their reliability across a range of
prediction values (e.g., [80, 81]). For some metrics, it
may also be useful to assess uncertainty, e.g., via confi-
dence intervals. In the context of supervised learning,
classification or prediction accuracy can be evaluated by
cross-validation, bootstrapping, or on a separate test
dataset (e.g., [13, 46]). In this case, procedures to split
data into training and test sets should be appropriate for
the data structure and the prediction task at hand (e.g.,
leaving out whole samples or chromosomes [82]).
Additional metrics that do not rely on a ground truth

include measures of stability, stochasticity, and robust-
ness. These measures may be quantified by running
methods multiple times using different inputs or sub-
sampled data (e.g., we observed substantial variability in
performance for some methods in [29, 31]). ‘Missing
values’ may occur if a method does not return any values
for a certain metric, e.g., due to a failure to converge or
other computational issues such as excessive runtime or

Evaluation criteria

Comparison to ground truth

Discrete target

Quantitative Qualitative

No ground truth

Continuous target Complex target

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

FPR

T
P

R

T
P

R

0.
01

0.
05 0.

1
0.

1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

0.00

0.25

0.50

0.75

1.00

FDR

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

Recall

P
re

ci
si

on

Method_1

Method_2

True positive rate (TPR)
False positive rate (FPR)
False discovery rate (FDR)
Sensitivity and specificity
precision and recall
F1 score
Adjusted Rand index
Normalized mutual information
ROC / TPR-FDR / PR curves
Area under ROC / PR curves
Classification accuracy (supervised)

Root mean square error
Distance measures
Pearson correlation
Sum of absolute log-ratios
Log-modulus
Cross-entropy
Prediction accuracy (supervised)

Graph similarity
Tree similarity
Distribution similarity
Custom metrics

Stability
Stochasticity
Robustness
Null comparisons
Runtime
Scalability
Memory requirements

User-friendliness
Documentation quality
Installation procedures
Freely available / open source
Code quality
Use of unit testing
Use of continuous integration

a

b

Fig. 2 Summary and examples of performance metrics. a Schematic overview of classes of frequently used performance metrics, including examples
(boxes outlined in gray). b Examples of popular visualizations of quantitative performance metrics for classification methods, using reference datasets
with a ground truth. ROC curves (left). TPR versus FDR curves (center); circles represent observed TPR and FDR at typical FDR thresholds of 1, 5, and 10%,
with filled circles indicating observed FDR lower than or equal to the imposed threshold. PR curves (right). Visualizations in b were generated using
iCOBRA R/Bioconductor package [56]. FDR false discovery rate, FPR false positive rate, PR precision–recall, ROC receiver operating characteristic, TPR true
positive rate

Weber et al. Genome Biology (2019) 20:125 Page 6 of 12
memory requirements (e.g., [27, 29, 31]). Fallback solu-
tions such as imputation may be considered in this case
[83], although these should be transparently reported.
For non-deterministic methods (e.g., with random starts
or stochastic optimization), variability in performance
when using different random seeds or subsampled data
should be characterized. Null comparisons can be con-
structed by randomizing group labels such that datasets
do not contain any true signal, which can provide infor-
mation on error rates (e.g., [22, 25, 26]). However, these
must be designed carefully to avoid confounding by
batch or population structure, and to avoid strong
within-group batch effects that are not accounted for.
For most benchmarks, multiple metrics will be rele-

vant. Focusing on a single metric can give an incomplete
view: methods may not be directly comparable if they
are designed for different tasks, and different users may
be interested in different aspects of performance. There-
fore, a crucial design decision is whether to focus on an
overall ranking, e.g., by combining or weighting multiple
metrics. In general, it is unlikely that a single method
will perform best across all metrics, and performance
differences between top-ranked methods for individual
metrics can be small. Therefore, a good strategy is to use
rankings from multiple metrics to identify a set of con-
sistently high-performing methods, and then highlight
the different strengths of these methods. For example, in
[31], we identified methods that gave good clustering
performance, and then highlighted differences in run-
times among these. In several studies, we have presented
results in the form of a graphical summary of perform-
ance according to multiple criteria (examples include
Fig. 3 in [27] and Fig. 5 in [29] from our work; and Fig.
2 in [39] and Fig. 6 in [32] from other authors).

Weber et al. Genome Biology (2019) 20:125 Page 7 of 12
Identifying methods that consistently underperform can
also be useful, to allow readers to avoid these.

Evaluation criteria: secondary measures
In addition to the key quantitative performance met-
rics, methods should also be evaluated according to
secondary measures, including runtime, scalability,
and other computational requirements, as well as
qualitative aspects such as user-friendliness, installa-
tion procedures, code quality, and documentation
quality (Fig. 2a). From the user perspective, the final
choice of method may involve tradeoffs according to
these measures: an adequately performing method
may be preferable to a top-performing method that is
especially difficult to use.
In our experience, runtimes and scalability can vary

enormously between methods (e.g., in our work, run-
times for cytometry clustering algorithms [31] and meta-
genome analysis tools [79] ranged across multiple orders
of magnitude for the same datasets). Similarly, memory
and other computational requirements can vary widely.
Runtimes and scalability may be investigated systematic-
ally, e.g., by varying the number of cells or genes in a
single-cell RNA-sequencing dataset [28, 29]. In many
cases, there is a tradeoff between performance and com-
putational requirements. In practice, if computational
requirements for a top-performing method are prohibi-
tive, then a different method may be preferred by some
users.
User-friendliness, installation procedures, and docu-

mentation quality can also be highly variable [84, 85].
Streamlined installation procedures can be ensured by
distributing the method via standard package repositor-
ies, such as CRAN and Bioconductor for R, or PyPI for
Python. Alternative options include GitHub and other
code repositories or institutional websites; however,
these options do not provide users with the same guar-
antees regarding reliability and documentation quality.
Availability across multiple operating systems and within
popular programming languages for data analysis is also
important. Availability of graphical user interfaces can
further extend accessibility, although graphical-only
methods hinder reproducibility and are thus difficult to
include in a systematic benchmark.
For many users, freely available and open source soft-

ware will be preferred, since it is more broadly accessible
and can be adapted by experienced users. From the
developer perspective, code quality and use of software
development best practices, such as unit testing and
continuous integration, are also important. Similarly, ad-
herence to commonly used data formats (e.g., GFF/GTF
files for genomic features, BAM/SAM files for sequence
alignment data, or FCS files for flow or mass cytometry
data) greatly improves accessibility and extensibility.
High-quality documentation is critical, including help
pages and tutorials. Ideally, all code examples in the
documentation should be continually tested, e.g., as Bio-
conductor does, or through continuous integration.

Interpretation, guidelines, and recommendations
For a truly excellent benchmark, results must be clearly
interpreted from the perspective of the intended audi-
ence. For method users, results should be summarized
in the form of recommendations. An overall ranking of
methods (or separate rankings for multiple evaluation
criteria) can provide a useful overview. However, as
mentioned above, some methods may not be directly
comparable (e.g. since they are designed for different
tasks), and different users may be interested in different
aspects of performance. In addition, it is unlikely that
there will be a clear ‘winner’ across all criteria, and per-
formance differences between top-ranked methods can
be small. Therefore, an informative strategy is to use the
rankings to identify a set of high-performing methods,
and to highlight the different strengths and tradeoffs
among these methods. The interpretation may also in-
volve biological or other domain knowledge to establish
the scientific relevance of differences in performance.
Importantly, neutrality principles should be preserved
during the interpretation.
For method developers, the conclusions may include

guidelines for possible future development of methods.
By assisting method developers to focus their research
efforts, high-quality benchmarks can have significant im-
pact on the progress of methodological research.
Limitations of the benchmark should be transparently

discussed. For example, in [27] we used default parame-
ters for all methods, while in [31] our datasets relied on
manually gated reference cell populations as the ground
truth. Without a thorough discussion of limitations, a
benchmark runs the risk of misleading readers; in ex-
treme cases, this may even harm the broader research
field by guiding research efforts in the wrong directions.

Publication and reporting of results
The publication and reporting strategy should emphasize
clarity and accessibility. Visualizations summarizing
multiple performance metrics can be highly informative
for method users (examples include Fig. 3 in [27] and
Fig. 5 in [29] from our own work; as well as Fig. 6 in
[32]). Summary tables are also useful as a reference (e.g.,
[31, 45]). Additional visualizations, such as flow charts
to guide the choice of method for different analyses, are
a helpful way to engage the reader (e.g., Fig. 5 in [27]).
For extensive benchmarks, online resources enable

readers to interactively explore the results (examples
from our work include [27, 29], which allow users to fil-
ter metrics and datasets). Figure 3 displays an example

2GB100MB

Topology

dynguidelines Tutorial Citation

“

?

Show code </>

Lenses Default Summary (Fig. 2) Method Scalability Stability Usability Accuracy Overall Everything

Show/hide columns

Benchmark study Evaluating methods with dynbenchmark Part of

Options Infer trajectories with dyno

Yes I don’t know No

Do you expect multiple disconnected trajectories in the data?

Scalability

1000

COMPUTED

Number of cells

Time limit

1000

10s

10s 20s 30s 40s 50s 1m 10m 20m 30m 40m 50m 1h 4h 8h 16h 1d 3d

∞

∞

Number of features (genes)

Name

Slingshot

SCORPIUS

Angle

PAGA

Embeddr

MST

Waterfall

TSCAN

Component 1

SLICE

Monocle DDRTree

EIPiGraph linear

100

96

92

89

89

89

89

88

87

83

82

81

942MB

507MB

308MB

559MB Unstable

591MB

572MB

369MB

476MB

516MB

713MB

647MB

573MB

8s

3s

1s

15s

5s

4s

5s

5s

1s

16s

41s

1m

Priors Errors Overall Stability

1h

Memory limit

100MB 500MB 900MB 1GB 3GB 5GB 7GB 9GB 10GB 30GB 50GB70GB 90GB

∞

∞

Method Scalability StabilityAccuracy

!

Unstable!

Unstable!

Unstable!

dynverse

Fig. 3 Example of an interactive website allowing users to explore the results of one of our benchmarking studies [27]. This website was created
using the Shiny framework in R

Weber et al. Genome Biology (2019) 20:125 Page 8 of 12
of an interactive website from one of our benchmarks
[27], which facilitates exploration of results and assists
users with choosing a suitable method. While tradeoffs
should be considered in terms of the amount of work re-
quired, these efforts are likely to have significant benefit
for the community.
In most cases, results will be published in a peer-

reviewed article. For a neutral benchmark, the bench-
mark will be the main focus of the paper. For a bench-
mark to introduce a new method, the results will form
one part of the exposition. We highly recommend pub-
lishing a preprint prior to peer review (e.g., on bioRxiv
or arXiv) to speed up distribution of results, broaden ac-
cessibility, and solicit additional feedback. In particular,
direct consultation with method authors can generate
highly useful feedback (examples from our work are de-
scribed in the acknowledgments in [79, 86]). Finally, at
publication time, considering open access options will
further broaden accessibility.

Enabling future extensions
Since new methods are continually emerging [1], bench-
marks can quickly become out of date. To avoid this, a
truly excellent benchmark should be extensible. For ex-
ample, creating public repositories containing code and
data allows other researchers to build on the results to in-
clude new methods or datasets, or to try different param-
eter settings or pre-processing procedures (examples from
our work include [27–31]). In addition to raw data and
code, it is useful to distribute pre-processed and/or results
data (examples include [28, 29, 56] from our work and
[75, 87, 88] from others), especially for computationally
intensive benchmarks. This may be combined with an
interactive website, where users can upload results from a
new method, to be included in an updated comparison
either automatically or by the original authors (e.g., [35,
89, 90]). ‘Continuous’ benchmarks, which are continually
updated, are especially convenient (e.g., [91]), but may re-
quire significant additional effort.

Reproducible research best practices
Reproducibility of research findings has become an in-
creasing concern in numerous areas of study [92]. In
computational sciences, reproducibility of code and data
analyses has been recognized as a useful ‘minimum
standard’ that enables other researchers to verify ana-
lyses [93]. Access to code and data has previously
enabled method developers to uncover potential errors
in published benchmarks due to suboptimal usage of
methods [74, 94, 95]. Journal publication policies can
play a crucial role in encouraging authors to follow these
practices [96]; experience shows that statements that
code and data are ‘available on request’ are often insuffi-
cient [97]. In the context of benchmarking, code and
data availability also provides further benefits: for
method users, code repositories serve as a source of
annotated code to run methods and build analysis pipe-
lines, while for developers, code repositories can act as a
prototype for future method development work.
Parameter values (including random seeds) and soft-

ware versions should be clearly reported to ensure
complete reproducibility. For methods that are run using
scripts, these will be recorded within the scripts. In R,
the command ‘sessionInfo()’ gives a complete summary
of package versions, the version of R, and the operating
system. For methods only available via graphical inter-
faces, parameters and versions must be recorded manu-
ally. Reproducible workflow frameworks, such as the
Galaxy platform [98], can also be helpful. A summary
table or spreadsheet of parameter values and software

Weber et al. Genome Biology (2019) 20:125 Page 9 of 12
versions can be published as supplementary information
along with the publication describing the benchmark
(e.g., Supporting Information Table S1 in our study
[31]).
Automated workflow management tools and special-

ized tools for organizing benchmarks provide sophisti-
cated options for setting up benchmarks and creating a
reproducible record, including software environments,
package versions, and parameter values. Examples in-
clude SummarizedBenchmark [99], DataPackageR [100],
workflowr [101], and Dynamic Statistical Comparisons
[102]. Some tools (e.g., workflowr) also provide stream-
lined options for publishing results online. In machine
learning, OpenML provides a platform to organize and
share benchmarks [103]. More general tools for man-
aging computational workflows, including Snakemake
[104], Make, Bioconda [105], and conda, can be custom-
ized to capture setup information. Containerization tools
such as Docker and Singularity may be used to encapsu-
late a software environment for each method, preserving
the package version as well as dependency packages and
the operating system, and facilitating distribution of
methods to end users (e.g., in our study [27]). Best prac-
tices from software development are also useful, includ-
ing unit testing and continuous integration.
Many free online resources are available for sharing

code and data, including GitHub and Bitbucket, reposi-
tories for specific data types (e.g., ArrayExpress [106],
the Gene Expression Omnibus [107], and FlowReposi-
tory [108]), and more general data repositories (e.g., fig-
share, Dryad, Zenodo, Bioconductor ExperimentHub,
and Mendeley Data). Customized resources (examples
from our work include [29, 56]) can be designed when
additional flexibility is needed. Several repositories allow
the creation of ‘digital object identifiers’ (DOIs) for code
or data objects. In general, preference should be given to
publicly funded repositories, which provide greater guar-
antees for long-term archival stability [84, 85].
An extensive literature exists on best practices for re-

producible computational research (e.g., [109]). Some
practices (e.g., containerization) may involve significant
additional work; however, in our experience, almost all
efforts in this area prove useful, especially by facilitating
later extensions by ourselves or other researchers.

Discussion
In this review, we have described a set of key principles
for designing a high-quality computational benchmark.
In our view, elements of all of these principles are essen-
tial. However, we have also emphasized that any bench-
mark will involve tradeoffs, due to limited expertise and
resources, and that some principles are less central to
the evaluation. Table 1 provides a summary of examples
of key tradeoffs and pitfalls related to benchmarking,
along with our judgment of how truly ‘essential’ each
principle is.
A number of potential pitfalls may arise from bench-

marking studies (Table 1). For example, subjectivity in
the choice of datasets or evaluation metrics could bias
the results. In particular, a benchmark that relies on un-
representative data or metrics that do not translate to
real-world scenarios may be misleading by showing poor
performance for methods that otherwise perform well.
This could harm method users, who may select an in-
appropriate method for their analyses, as well as method
developers, who may be discouraged from pursuing
promising methodological approaches. In extreme cases,
this could negatively affect the research field by influen-
cing the direction of research efforts. A thorough discus-
sion of the limitations of a benchmark can help avoid
these issues. Over the longer term, critical evaluations of
published benchmarks, so-called meta-benchmarks, will
also be informative [10, 13, 14].
Well-designed benchmarking studies provide highly

valuable information for users and developers of compu-
tational methods, but require careful consideration of a
number of important design principles. In this review,
we have discussed a series of guidelines for rigorous
benchmarking design and implementation, based on our
experiences in computational biology. We hope these
guidelines will assist computational researchers to design
high-quality, informative benchmarks, which will con-
tribute to scientific advances through informed selection
of methods by users and targeting of research efforts by
developers.

Abbreviations
FDR: False discovery rate; FPR: False positive rate; PR: Precision–recall;
ROC: Receiver operating characteristic; TPR: True positive rate

Acknowledgments
The authors thank members of the Robinson Lab at the University of Zurich
and Saeys Lab at Ghent University for valuable feedback.

Authors’ contributions
LMW proposed the project and drafted the manuscript. WS, RC, CS, AH, PPG,
ALB, YS, and MDR contributed ideas and references and contributed to
drafting of the manuscript. YS and MDR supervised the project. All authors
read and approved the final manuscript.

Funding
MDR acknowledges funding support from the UZH URPP Evolution in Action
and from the Swiss National Science Foundation (grant numbers 310030_175841
and CRSII5_177208). In addition, this project has been made possible in part
(grant number 2018–182828 to MDR) by the Chan Zuckerberg Initiative DAF, an
advised fund of the Silicon Valley Community Foundation. LMW was supported
by a Forschungskredit (Candoc) grant from the University of Zurich (FK-17-100).
WS and RC are supported by the Fonds Wetenschappelijk Onderzoek. YS is an
ISAC Marylou Ingram Scholar. ALB was supported by individual grants BO3139/2–
3 and BO3139/4–3 from the German Research Foundation (DFG) and by the
German Federal Ministry of Education and Research under grant number
01IS18036A (MCML).

Competing interests
The authors declare that they have no competing interests.

Weber et al. Genome Biology (2019) 20:125 Page 10 of 12
Author details
1Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich,
Switzerland. 2SIB Swiss Institute of Bioinformatics, University of Zurich, 8057
Zurich, Switzerland. 3Data Mining and Modelling for Biomedicine, VIB Center
for Inflammation Research, 9052 Ghent, Belgium. 4Department of Applied
Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent,
Belgium. 5Institute of Medical Informatics, Statistics and Epidemiology,
Technical University of Munich, 81675 Munich, Germany. 6Department of
Biochemistry, University of Otago, Dunedin 9016, New Zealand. 7Institute for
Medical Information Processing, Biometry and Epidemiology,
Ludwig-Maximilians-University, 81377 Munich, Germany. 8Present address:
Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of
Bioinformatics, 4058 Basel, Switzerland.

References
1. Zappia L, Phipson B, Oshlack A. Exploring the single-cell RNA-seq analysis

landscape with the scRNA-tools database. PLoS Comput Biol. 2018;14:
e1006245.

2. Boulesteix A-L, Binder H, Abrahamowicz M, Sauerbrei W. On the necessity
and design of studies comparing statistical methods. Biom J. 2018;60:216–8.

3. Boulesteix A-L, Lauer S, Eugster MJA. A plea for neutral comparison studies
in computational sciences. PLoS One. 2013;8:e61562.

4. Peters B, Brenner SE, Wang E, Slonim D, Kann MG. Putting benchmarks in
their rightful place: the heart of computational biology. PLoS Comput Biol.
2018;14:e1006494.

5. Boulesteix A-L. Ten simple rules for reducing overoptimistic reporting in
methodological computational research. PLoS Comput Biol. 2015;11:
e1004191.

6. Zheng S. Benchmarking: contexts and details matter. Genome Biol. 2017;18:129.
7. Mangul S, Martin LS, Hill BL, Lam AK-M, Distler MG, Zelikovsky A, et al.

Systematic benchmarking of omics computational tools. Nat Commun.
2019;10:1393.

8. Norel R, Rice JJ, Stolovitzky G. The self-assessment trap: can we all be better
than average? Mol Syst Biol. 2011;7:537.

9. Aniba MR, Poch O, Thompson JD. Issues in bioinformatics benchmarking:
the case study of multiple sequence alignment. Nucleic Acids Res. 2010;38:
7353–63.

10. Boulesteix A-L, Wilson R, Hapfelmeier A. Towards evidence-based
computational statistics: lessons from clinical research on the role and
design of real-data benchmark studies. BMC Med Res Methodol. 2017;
17:138.

11. Boulesteix A-L, Hable R, Lauer S, Eugster MJA. A statistical framework for
hypothesis testing in real data comparison studies. Am Stat. 2015;69:201–12.

12. Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate
statistical methods. Stat Med. 2019;38:2074–102.

13. Gardner PP, Watson RJ, Morgan XC, Draper JL, Finn RD, Morales SE, et al.
Identifying accurate metagenome and amplicon software via a meta-
analysis of sequence to taxonomy benchmarking studies. PeerJ. 2019;7:
e6160.

14. Gardner PP, Paterson JM, Ashari-Ghomi F, Umu SU, McGimpsey S, Pawlik A.
A meta-analysis of bioinformatics software benchmarks reveals that
publication-bias unduly influences software accuracy. bioRxiv. 2017:092205.

15. Evangelou E, Ioannidis JPA. Meta-analysis methods for genome-wide
association studies and beyond. Nat Rev Genet. 2013;14:379–89.

16. Hong F, Breitling R. A comparison of meta-analysis methods for detecting
differentially expressed genes in microarray experiments. Bioinformatics.
2008;24:374–82.

17. Boutros PC, Margolin AA, Stuart JM, Califano A, Stolovitzky G. Toward better
benchmarking: challenge-based methods assessment in cancer genomics.
Genome Biol. 2014;15:462.

18. Friedberg I, Wass MN, Mooney SD, Radivojac P. Ten simple rules for a
community computational challenge. PLoS Comput Biol. 2015;11:e1004150.

19. Van Mechelen I, Boulesteix A-L, Dangl R, Dean N, Guyon I, Hennig C, et al.
Benchmarking in cluster analysis: A white paper. arXiv. 2018;1809:10496.

20. Angers-Loustau A, Petrillo M, Bengtsson-Palme J, Berendonk T, Blais B, Chan
K-G, et al. The challenges of designing a benchmark strategy for
bioinformatics pipelines in the identification of antimicrobial resistance
determinants using next generation sequencing technologies. F1000Res.
2018;7:459.
21. Ioannidis JPA. Meta-research: why research on research matters. PLoS Biol.
2018;16:e2005468.

22. Weber LM, Nowicka M, Soneson C, Robinson MD. Diffcyt: differential
discovery in high-dimensional cytometry via high-resolution clustering.
Commun Biol. 2019;2:183.

23. Nowicka M, Robinson MD. DRIMSeq: a Dirichlet-multinomial framework for
multivariate count outcomes in genomics. F1000Res. 2016;5:1356.

24. Levine JH, Simonds EF, Bendall SC, Davis KL, Amir E-AD, Tadmor MD, et al.
Data-driven phenotypic dissection of AML reveals progenitor-like cells that
correlate with prognosis. Cell. 2015;162:184–97.

25. Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression
in RNA sequencing data using observation weights. Nucleic Acids Res. 2014;
42:e91.

26. Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

27. Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell
trajectory inference methods. Nat Biotechnol. 2019;37:547–54.

28. Duò A, Robinson MD, Soneson C. A systematic performance evaluation of
clustering methods for single-cell RNA-seq data. F1000Res. 2018;7:1141.

29. Soneson C, Robinson MD. Bias, robustness and scalability in single-cell
differential expression analysis. Nat Methods. 2018;15:255–61.

30. Saelens W, Cannoodt R, Saeys Y. A comprehensive evaluation of module
detection methods for gene expression data. Nat Commun. 2018;9:1090.

31. Weber LM, Robinson MD. Comparison of clustering methods for high-
dimensional single-cell flow and mass cytometry data. Cytometry Part A.
2016;89A:1084–96.

32. Korthauer K, Kimes PK, Duvallet C, Reyes A, Subramanian A, Teng M, et al. A
practical guide to methods controlling false discovery rates. Genome Biol.
2019;20:118.

33. Freytag S, Tian L, Lönnstedt I, Ng M, Bahlo M. Comparison of clustering
tools in R for medium-sized 10x genomics single-cell RNA-sequencing data.
F1000Research. 2018;7:1297.

34. Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR.
Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat
Methods. 2017;14:135–9.

35. Kanitz A, Gypas F, Gruber AJ, Gruber AR, Martin G, Zavolan M. Comparative
assessment of methods for the computational inference of transcript
isoform abundance from RNA-seq data. Genome Biol. 2015;16:150.

36. Soneson C, Delorenzi M. A comparison of methods for differential
expression analysis of RNA-seq data. BMC Bioinformatics. 2013;14:91.

37. Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, et al.
Comprehensive evaluation of differential gene expression analysis methods
for RNA-seq data. Genome Biol. 2013;14:R95.

38. Dillies M-A, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N,
et al. A comprehensive evaluation of normalization methods for Illumina high-
throughput RNA sequencing data analysis. Brief Bioinform. 2012;14:671–83.

39. Sage D, Kirshner H, Pengo T, Stuurman N, Min J, Manley S, et al.
Quantitative evaluation of software packages for single-molecule
localization microscopy. Nat Methods. 2015;12:717–24.

40. Weirauch MT, Cote A, Norel R, Annala M, Zhao Y, Riley TR, et al. Evaluation
of methods for modeling transcription factor sequence specificity. Nat
Biotechnol. 2013;31:126–34.

41. Costello JC, Heiser LM, Georgii E, Gönen M, Menden MP, Wang NJ, et al. A
community effort to assess and improve drug sensitivity prediction
algorithms. Nat Biotechnol. 2014;32:1202–12.

42. Küffner R, Zach N, Norel R, Hawe J, Schoenfeld D, Wang L, et al.
Crowdsourced analysis of clinical trial data to predict amyotrophic lateral
sclerosis progression. Nat Biotechnol. 2015;33:51–7.

43. Ewing AD, Houlahan KE, Hu Y, Ellrott K, Caloian C, Yamaguchi TN, et al.
Combining tumor genome simulation with crowdsourcing to benchmark
somatic single-nucleotide-variant detection. Nat Methods. 2015;12:623–30.

44. Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, et al. Inferring
causal molecular networks: empirical assessment through a community-
based effort. Nat Methods. 2016;13:310–8.

45. Aghaeepour N, Finak G. The FlowCAP Consortium, the DREAM Consortium,
Hoos H, Mosmann TR, et al. critical assessment of automated flow
cytometry data analysis techniques. Nat Methods. 2013;10:228–38.

46. Aghaeepour N, Chattopadhyay P, Chikina M, Dhaene T, Van Gassen S,
Kursa M, et al. A benchmark for evaluation of algorithms for
identification of cellular correlates of clinical outcomes. Cytometry Part
A. 2016;89A:16–21.

Weber et al. Genome Biology (2019) 20:125 Page 11 of 12
47. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical
assessment of methods of protein structure prediction (CASP) — round XII.
Proteins. 2018;86:7–15.

48. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A. Critical
assessment of methods of protein structure prediction: Progress and new
directions in round XI. Proteins. 2016;84:4–14.

49. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al.
Critical assessment of metagenome interpretation—a benchmark of
metagenomics software. Nat Methods. 2017;14:1063–71.

50. Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, et al. Assemblathon 1:
a competitive assessment of de novo short read assembly methods.
Genome Res. 2011;21:2224–41.

51. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, et al.
Assemblathon 2: evaluating de novo methods of genome assembly in
three vertebrate species. GigaScience. 2013;2:1–31.

52. Consortium MAQC. The MicroArray quality control (MAQC) project shows
inter- and intraplatform reproducibility of gene expression measurements.
Nature Biotechnol. 2006;24:1151–61.

53. Consortium MAQC. The microarray quality control (MAQC)-II study of
common practices for the development and validation of microarray-based
predictive models. Nature Biotechnol. 2010;28:827–38.

54. SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq
accuracy, reproducibility and information content by the sequencing quality
control Consortium. Nat Biotechnol. 2014;32:903–14.

55. Krusche P, Trigg L, Boutros PC, Mason CE, De La Vega FM, Moore BL, et al.
Best practices for benchmarking germline small-variant calls in human
genomes. Nature Biotechnol. 2019;37:555–60.

56. Soneson C, Robinson MD. iCOBRA: open, reproducible, standardized and
live method benchmarking. Nat Methods. 2016;13:283.

57. Soneson C, Robinson MD. Towards unified quality verification of synthetic
count data with countsimQC. Bioinformatics. 2017;34:691–2.

58. Korthauer K, Chakraborty S, Benjamini Y, Irizarry RA. Detection and accurate
false discovery rate control of differentially methylated regions from whole
genome bisulfite sequencing. Biostatistics. 2018:1–17.

59. Caboche S, Audebert C, Lemoine Y, Hot D. Comparison of mapping
algorithms used in high-throughput sequencing: application to ion torrent
data. BMC Genomics. 2014;15:264.

60. Grimm DG, Azencott C-A, Aicheler F, Gieraths U, MacArthur DG,
Samocha KE, et al. The evaluation of tools used to predict the impact
of missense variants is hindered by two types of circularity. Hum Mutat.
2015;36:513–23.

61. Jelizarow M, Guillemot V, Tenenhaus A, Strimmer K, Boulesteix A-L.
Over-optimism in bioinformatics: an illustration. Bioinformatics. 2010;26:
1990–8.

62. Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, et al. Synthetic spike-
in standards for RNA-seq experiments. Genome Res. 2011;21:1543–51.

63. Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, et al.
Highly parallel direct RNA sequencing on an array of nanopores. Nat
Methods. 2018;15:201–6.

64. Fang F, Hodges E, Molaro A, Dean M, Hannon GJ, Smith AD. Genomic
landscape of human allele-specific DNA methylation. Proc Natl Acad Sci U S
A. 2012;109:7332–7.

65. The Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse
organs creates a tabula Muris. Nature. 2018;562:367–72.

66. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al.
Massively parallel digital transcriptional profiling of single cells. Nat
Commun. 2017;8:14049.

67. Tian L, Dong X, Freytag S, Lê Cao K-A, Su S, JalalAbadi A, et al.
Benchmarking single cell RNA-sequencing analysis pipelines using mixture
control experiments. Nat Methods. 2019;16:479–87.

68. Arvaniti E, Claassen M. Sensitive detection of rare disease-associated cell
subsets via representation learning. Nat Commun. 2017;8:1–10.

69. Rigaill G, Balzergue S, Brunaud V, Blondet E, Rau A, Rogier O, et al. Synthetic
data sets for the identification of key ingredients for RNA-seq differential
analysis. Brief Bioinform. 2018;19:65–76.

70. Löwes B, Chauve C, Ponty Y, Giegerich R. The BRaliBase dent — a tale of
benchmark design and interpretation. Brief Bioinform. 2017;18:306–11.

71. Couronné R, Probst P, Boulesteix A-L. Random forest versus logistic regression:
a large-scale benchmark experiment. BMC Bioinform. 2018;19:270.

72. Schneider J, Hapfelmeier A, Thöres S, Obermeier A, Schulz C, Pförringer D,
et al. Mortality risk for acute cholangitis (MAC): a risk prediction model for
in-hospital mortality in patients with acute cholangitis. BMC Gastroenterol.
2016;16:15.

73. Hu Q, Greene CS. Parameter tuning is a key part of dimensionality reduction
via deep variational autoencoders for single cell RNA transcriptomics. Pac
Symp Biocomput. 2019;24:362–73.

74. Vaquero-Garcia J, Norton S, Barash Y. LeafCutter vs. MAJIQ and comparing
software in the fast moving field of genomics. bioRxiv. 2018:463927.

75. Wiwie C, Baumbach J, Röttger R. Comparing the performance of biomedical
clustering methods. Nat Methods. 2015;12:1033–8.

76. Saito T, Rehmsmeier M. The precision-recall plot is more informative than
the ROC plot when evaluating binary classifiers on imbalanced datasets.
PLoS One. 2015;10:e0118432.

77. Powers DMW. Visualization of tradeoff in evaluation: from precision-recall &
PN to LIFT, ROC & BIRD. arXiv. 2015;1505:00401.

78. Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-
level estimates improve gene-level inferences. F1000Res. 2016;4:1521.

79. Lindgreen S, Adair KL, Gardner PP. An evaluation of the accuracy and speed
of metagenome analysis tools. Sci Rep. 2016;6:19233.

80. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29:1072–5.

81. Narzisi G, Mishra B. Comparing de novo genome assembly: the long and
short of it. PLoS One. 2011;6:e19175.

82. Schreiber J, Singh R, Bilmes J, Noble WS. A pitfall for machine learning
methods aiming to predict across cell types. bioRxiv. 2019:512434.

83. Bischl B, Schiffner J, Weihs C. Benchmarking local classification methods.
Comput Stat. 2013;28:2599–619.

84. Mangul S, Martin LS, Eskin E, Blekhman R. Improving the usability and
archival stability of bioinformatics software. Genome Biol. 2019;20:47.

85. Mangul S, Mosqueiro T, Abdill RJ, Duong D, Mitchell K, Sarwal V, et al.
Challenges and recommendations to improve installability and archival
stability of omics computational tools. bioRxiv. 2019:452532.

86. Freyhult EK, Bollback JP, Gardner PP. Exploring genomic dark matter: a
critical assessment of the performance of homology search methods on
noncoding RNA. Genome Res. 2007;17:117–25.

87. Bokulich NA, Rideout JR, Mercurio WG, Shiffer A, Wolfe B, Maurice CF, et al.
Mockrobiota: a public resource for microbiome bioinformatics
benchmarking. mSystems. 2016;1:e00062–16.

88. Conchúir SO, Barlow KA, Pache RA, Ollikainen N, Kundert K, O’Meara MJ,
et al. A web resource for standardized benchmark datasets, metrics, and
Rosetta protocols for macromolecular modeling and design. PLoS One.
2015;10:e0130433.

89. Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP. A benchmark for
Affymetrix GeneChip expression measures. Bioinformatics. 2004;20:323–31.

90. Irizarry RA, Wu Z, Jaffee HA. Comparison of Affymetrix GeneChip expression
measures. Bioinformatics. 2006;22:789–94.

91. Barton M. nucleotid.es: an assembler catalogue. http://nucleotid.es/.
Accessed 4 June 2019.

92. Ioannidis JPA. Why most published research findings are false. PLoS Med.
2005;2:e124.

93. Peng RD. Reproducible research in computational science. Science. 2011;
334:1226–7.

94. Zhou X, Robinson MD. Do count-based differential expression methods
perform poorly when genes are expressed in only one condition? Genome
Biol. 2015;16:222.

95. Zhou X, Oshlack A, Robinson MD. miRNA-Seq normalization comparisons
need improvement. RNA. 2013;19:733–4.

96. Hofner B, Schmid M, Edler L. Reproducible research in statistics: a review
and guidelines for the biometrical journal. Biom J. 2016;58:416–27.

97. Boulesteix A-L, Janitza S, Hornung R, Probst P, Busen H, Hapfelmeier A.
Making complex prediction rules applicable for readers: current practice in
random forest literature and recommendations. Biom J. 2018. https://doi.
org/10.1002/bimj.201700243.

98. Afgan E, Baker D, Batut B, Van Den Beek M, Bouvier D, Čech M, et al. The
galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–44.

99. Kimes PK, Reyes A. Reproducible and replicable comparisons using
SummarizedBenchmark. Bioinformatics. 2019;35:137–9.

100. Finak G, Mayer B, Fulp W, Obrecht P, Sato A, Chung E, et al.
DataPackageR: reproducible data preprocessing, standardization and
sharing using R/Bioconductor for collaborative data analysis. Gates
Open Res. 2018;2:31.

http://nucleotid.es/
https://doi.org/10.1002/bimj.201700243
https://doi.org/10.1002/bimj.201700243

Weber et al. Genome Biology (2019) 20:125 Page 12 of 12
101. Blischak J, Carbonetto P, Stephens M. Workflowr: organized + reproducible
+ shareable data science in R. https://jdblischak.github.io/workflowr/.
Accessed 4 June 2019.

102. Wang G, Stephens M, Carbonetto P. DSC: Dynamic Statistical Comparisons
https://stephenslab.github.io/dsc-wiki/index.html. Accessed 4 June 2019.

103. Vanschoren J, van Rijn JN, Bischl B, Torgo L. OpenML: networked science in
machine learning. SIGKDD Explor. 2014;15:49–60.

104. Köster J, Rahmann S. Snakemake — a scalable bioinformatics workflow
engine. Bioinformatics. 2012;28:2520–2.

105. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al.
Bioconda: sustainable and comprehensive software distribution for the life
sciences. Nat Methods. 2018;15:475–6.

106. Kolesnikov N, Hastings E, Keays M, Melnichuk O, Tang YA, Williams E, et al.
ArrayExpress update — simplifying data submissions. Nucleic Acids Res.
2015;43:D1113–6.

107. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al.
NCBI GEO: archive for functional genomics data sets — update. Nucleic
Acids Res. 2013;41:D991–5.

108. Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository: a
resource of annotated flow cytometry datasets associated with peer-
reviewed publications. Cytometry Part A. 2012;81A:727–31.

109. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for
reproducible computational research. PLoS Comput Biol. 2013;9:e1003285.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://jdblischak.github.io/workflowr/
https://stephenslab.github.io/dsc-wiki/index.html

	Abstract
	Introduction
	Defining the purpose and scope
	Selection of methods
	Selection (or design) of datasets
	Parameters and software versions
	Evaluation criteria: key quantitative performance metrics
	Evaluation criteria: secondary measures
	Interpretation, guidelines, and recommendations
	Publication and reporting of results
	Enabling future extensions
	Reproducible research best practices

	Discussion
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Competing interests
	Author details
	References
	Publisher’s Note

