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Abstract

The vast quantities of short-read sequencing data being generated are often exchanged and stored as aligned
reads. However, aligned data becomes outdated as new reference genomes and alignment methods become
available. Here we describe Bazam, a tool that efficiently extracts the original paired FASTQ from alignment files
(BAM or CRAM format) in a format that directly allows efficient realignment. Bazam facilitates up to a 90% reduction
in the time for realignment compared to standard methods. Bazam can support selective extraction of read pairs
from focused genomic regions for applications such as targeted region analyses, quality control, structural variant
calling, and alignment comparisons.

Background
The wide-scale adoption of high-throughput genomic
sequencing instruments over the last 10 years has gener-
ated vast quantities of genomic data with enormous po-
tential for future use. Genomic data is often stored and
exchanged as aligned reads in a coordinate-sorted BAM
or CRAM format. This format is common because many
applications (such as viewing the alignment or routine
variant calling) can utilize it directly. Storage in aligned
form, however, has the significant disadvantage that the
data is tied to the reference genome and alignment
method used. Many results are highly sensitive to these
parameters, and combined data sets typically cannot be
analyzed together at all unless these parameters are
identical. Consequently, to make optimal use of data,
users often need to realign the data to a recent genome
build and reference. This is resulting in a widespread
and growing need for the capability to efficiently realign
genomic data.
Realignment of paired reads from aligned data is how-

ever both computationally expensive and inconvenient
using standard methods. The challenges arise because
aligners must access both reads of a pair simultaneously
in order to optimally align them. While both reads are

usually stored in an alignment file, in a coordinate-
sorted file a significant fraction may be distant from each
other. In these cases, an expensive random lookup is
necessary to read the mate information so that both
reads of the pair can be written to the output together.
Consequently, the standard practice for realignment in-
volves first extracting all the reads, and then sorting
them by read name on disk prior to realignment. While
this makes extraction feasible, the process is lengthy and
requires substantial resources due to the intermediate
steps. Interestingly, Picard Tools [1] offers an alternative
method to extract read pairs, in the form of SamTo-
Fastq, which avoids the need for these intermediate steps
in extracting read pairs. However, this method is not
widely used in the community. This is likely because
SamToFastq is poorly optimized for memory use, mak-
ing it impractical for use with large data sets. Addition-
ally, Picard Tools cannot target a specific locus and can
only emit a single output stream, causing the process to
be bottlenecked by the maximum throughput of a single
downstream process (such as alignment). Biobambam
[2] is another tool that addresses a similar purpose. Bio-
bambam uses a specialized algorithm and data structure
to reduce its memory requirements and increase effi-
ciency, but ultimately relies on storing reads on disk
when the number of pending reads to be paired exceeds
a threshold. Biobambam also does not offer advanced
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features such as fully flexible read filtering and is limited
to output through a single instance of the aligner.
Here we introduce Bazam, an alternative to SamTo-

Fastq that optimizes memory use, while offering in-
creased parallelism and other additional features. Bazam
increases parallelism by splitting the output streams into
multiple paths for separate realignment (Fig. 1). Using
this technique, a single-source alignment can be rea-
ligned using an unlimited number of parallel aligners,
significantly accelerating the process when a computa-
tional cluster or cloud computing resource is available.
While realignment is a key application, Bazam also

offers utility for any other application relying on detailed
read pair information. Example applications include
quality control and structural variant calling. Bazam of-
fers two additional features of particular interest: read
position tagging and localized extraction. Read position
tagging renames reads as they are streamed to include
the original alignment position in the name of each read.
This feature allows ready comparison between new and
old alignment positions after realignment. Localized
extraction allows realignment to be limited to reads
overlapping specified genomic coordinates. Like realign-
ment, this can be achieved using standard tools. How-
ever, these tools do not emit both reads of a pair if only
one overlaps a region of interest, and are therefore un-
suitable for applications that require both of the reads.

Here we describe the implementation of Bazam and
demonstrate that it increases efficiency without com-
promising accuracy.

Results
Bazam design
Pairing of reads
The primary challenge in extracting paired reads from
BAM and CRAM files arises from the predominant choice
of coordinate-sorted ordering for their storage. This for-
mat is used because it places all the reads aligned to a
given genomic locus in close physical proximity within the
file, maximizing efficiency for any analysis focused on
short-range variation (such as SNV and indel calling, or
visualization in genome browsers). However, coordinate
ordering is highly suboptimal for realignment, because a
small but significant fraction of reads are located to a large
genomic distance from their mate. Consequently, a simple
linear scan cannot readily extract both a read and its mate
in many cases. One possibility is to retrieve each mate as
needed using a random seek within the file to the location
of its mate. This strategy is highly inefficient, however, be-
cause reads are stored within BAM and CRAM files in a
block format such that extracting a single read requires
decoding some or all of the other reads from the same
block. In practice, such a random seek strategy slows
down read extraction by several orders of magnitude.

A

B

C

Fig. 1 Different configurations for using Bazam. a Simple realignment from one reference genome to another without intermediate storage or
steps. b Extraction of filtered reads such as those overlapping a specific locus. Reads can be streamed to downstream tools directly, or stored in
FASTQ format for further processing. c Sharded realignment allows for many copies of the aligner to run on different subsets of the data, greatly
speeding up realignment
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Bazam retains the efficient linear scan of standard
methods. However, instead of performing random
lookup of each mate, Bazam stores each read in memory
until the mate is encountered naturally. For the majority
of pairs, both reads derive from the same biological frag-
ment, which is typically closely matched to the reference
genome and therefore a short distance on the genome.
In these cases, the mate for a read is encountered soon
after the read itself, so that the first read needs to be
only briefly stored in memory. Reads aligned at a greater
distance from their mate must be buffered for signifi-
cantly longer. Consequently, Bazam requires enough
memory to run such that it can store these reads until
their mates are encountered by the linear scan. To re-
duce the memory load, Bazam does not store the full
read data structure in memory when the desired output
is in FASTQ format. Instead, Bazam stores only data
essential to the FASTQ output. Bazam additionally en-
codes the in-memory reads to compress the data and
reduce memory load.
The worst-case scenario is represented by a small pro-

portion of reads where the mate aligns to a different ref-
erence contig (or chromosome). These reads may
represent real structural variation within the sample, but
can also be generated artefactually in the preparation of
sequencing libraries. In these cases, the mate does not
resolve at all until its chromosome is encountered by the
linear scan. Accordingly, Bazam requires enough mem-
ory to store this small proportion of reads for the full
duration of the extraction.
By buffering reads, Bazam trades memory for speed.

The peak memory required depends on the coverage
depth of the alignment, the typical span between paired
reads (the insert size distribution) and also on the num-
ber of reads whose mates align to different contigs. We
observe on typical human whole genome data sequenced
at 30× mean coverage depth, that Bazam requires ap-
proximately 16–32 GB of RAM. For cancer genomes or
other scenarios with many genomic rearrangements, this
could potentially increase. However, for many common
scenarios, the memory requirement of Bazam remains
well within the limitations of the resources available in
most modern computing systems.

Parallelism and sharding
As computational performance is one of the main goals
of Bazam, it is designed with a high level of parallelism
internally so that system input/output (I/O) is never
blocked. This is achieved by using separate threads for
reading the input alignment file, writing the output, and
a pool of threads to index and buffer each read so that it
can be paired with its mate. To further ensure that per-
formance of Bazam can be scaled, read pairs can be split
into multiple streams, which is referred to as “sharding.”

In sharded mode, several copies of Bazam are run, with
each copy emitting a different subset of the reads. Bazam
utilizes the unique read name assigned to each read pair
to ensure that the output streams receive mutually ex-
clusive subsets. Specifically, the name of each read is
used to generate a hash code and the modulus of this
hash code with the total number of shards is used to
decide whether a read is processed by a given Bazam in-
stance. Many copies of Bazam can then run on the same
alignment file simultaneously, with each one outputting
a unique read subset. This arrangement both reduces
the peak memory load and increases parallelism, as each
shard can be streamed into different instance of the
aligner. With a computational cluster or cloud comput-
ing facilities, almost unlimited parallelism is achievable
with this method. Sharding can also be utilized to down-
sample data to lower coverage, by omitting one or more
output streams from alignment.

Output shuffling
In our testing of Bazam, we observed that, on some data
sets, use of Bazam could cause significant inflation in
memory usage of the downstream aligner software,
BWA. This issue was also observed using other tools
such as Biobambam. Investigation showed that the
memory inflation was linked to the order of the reads
and that randomizing the order eliminated the memory
inflation. Bazam therefore implements a feature to shuf-
fle extracted reads before writing them to the output.
This requires a buffer of reads to be held in memory,
increasing Bazam’s memory requirement. However, we
find that in some data sets, the increase in usage by Bazam
is more than offset by a greater decrease in memory usage
by BWA. This effect was not observed in other aligner
software that we tested, such as Bowtie2 [3].

Memory usage
To reduce memory use, Bazam compresses reads while
they are stored for pairing or shuffling. Bazam includes
several optional compression methods. The default
mechanism uses a 4-bit encoding for bases and the
compression library Snappy [4] to encode quality scores.
Although 2-bit encoding was considered for bases
(allowing 4 possible values), the need to encode possible
N bases in the reads required at least a 3-bit encoding to
store the 5 values. To align these with 8-bit byte bound-
aries, 2 bases are stored per byte. A future extension
could improve this scheme by using 3 bits per base,
thereby storing 4 bases in 12 bytes. In our testing,
Snappy compression reduces the memory needed to
store quality scores to approximately 60% of the original
size. Therefore, the overall compression is approximately
55% of the raw size. As a further memory optimization,
Bazam scans the BAM index to determine the number
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of reads aligned to each reference contig. If the mate for
a read is aligned to a contig for which no reads are
present in the index, Bazam avoids buffering the read in
memory. While such reads should not theoretically be
present in well-formed BAM files, in practice we have
found that BAM files are often filtered using mecha-
nisms that leave such reads in place, resulting in a high
memory burden if stored in memory for the duration of
the processing.

Efficiency of realignment on whole genome sequencing
To test the efficiency of Bazam, we applied it to a public
whole genome data set (NA12878, 30× mean coverage)
released as part of the Genome in a Bottle project [5].
First, we realigned the data set from GRCh37 to
GRCh38 using both Bazam and using the standard ap-
proach without Bazam. The standard approach consists
of first sorting reads using samtools bamshuf (http://
www.htslib.org/), then extracting them using samtools
bam2fq, and finally realigning using BWA mem [6] and
re-sorting the output BAM file using samtools sort. To
avoid directly storing intermediate files, this process was
constructed using Unix pipes. However, we note that the
intermediate sorting stages still write files, resulting in
substantial temporary storage requirements. We refer to
this process as Sort-Extract-Realign (SER). In this
process, we used 16 cores in total as we observed empir-
ically that on our test systems, relatively little improve-
ment in performance was gained by adding additional
cores. Picard SamToFastq was run using 32 GB of RAM
and given 16 processor cores. However, in this configur-
ation, it failed to complete as it exceeded the allocated
memory early in the process. When increased memory
was given, anomalies within the data set caused it to
abort the process. To enable its performance to be mea-
sured, the problematic line in the Picard source code
was removed, and the tool was recompiled, which en-
abled it to complete the processing. The Bazam process
consisted of Bazam directly streaming reads into BWA
mem, followed by re-sorting with samtools sort.
When using a single instance of BWA, Bazam took

similar overall time but reduced the storage required by
75.9% compared to the Sort-Extract-Realign process. In
this case, processing time was limited primarily by the
speed of alignment rather than Bazam’s ability to pair
reads. When run in sharded mode, however, Bazam was
able to split reads between 10 copies of BWA, resulting
in a time saving of 91%, while still reducing the storage
needed by 63.8% (Table 1).
The total memory used during the non-sharded Bazam

realignment peaked at 28 GB. This memory can be
broken down into the following: memory used to store
reads while they are being paired, memory used by other
parts of Bazam, and memory used by BWA. We

observed that the peak total memory used by all the
Bazam components was approximately 14 GB, with read
storage for pairing accounting for approximately 5.4 GB.
Much of the remainder is accounted for by large input
and output buffers, and internal queuing of data used to
ensure high performance. The components outside of
Bazam, including BWA and samtools sort, peaked at
14 GB (50%) of memory.

Accuracy of realignment
We tested the fidelity of Bazam’s read extraction process
by comparing Bazam’s output to the expected output
using two different methods. First, we converted all
reads from the evaluation data set to FASTQ format
using the SER method. Then, we aligned these reads to
GRCh37 using BWA mem and re-extracted to FASTQ
format using Bazam. Comparison of the two FASTQ
data sets found that reads were identical, showing that
Bazam reproduces FASTQ with perfect fidelity.
To investigate any unexpected effects resulting from re-

alignment with Bazam, we first realigned the SER-extracted
FASTQ to GRCh37, to create an updated alignment using
our local alignment configuration. Next, we realigned this
updated alignment, with Bazam. These steps ensured that
both alignments with and without Bazam used identical
reference genomes and aligner settings, so that these factors
did not cause artefactual differences.
We then compared the alignments with each other, by

applying Bazam’s read position tagging feature. The fea-
ture alters read names during realignment to carry the
original alignment position. In this way, reads in the new
alignment could be readily checked against their old
position to identify reads that “moved.”
The comparison between the Bazam and updated re-

alignments revealed a total of 13.7 m (1.7%) reads that
changed position after Bazam realignment. We hypothe-
sized based on previous studies [7] that this may be

Table 1 Comparison of run time, memory, and storage space
between Bazam and alternative processes for realignment. Timings
encompass the end to end process starting from read extraction
and ending with completion of realigned and sorted BAM files

Tool Storage
used

Memory Effective
Cores

Time

Sort-Extract-Realign 282 GB 20 GB 16 13 h, 15
min

Picard SamToFastq 148 GB 78 GB 16 16 h, 14
min

Biobambam
bamtofastq

149 GB 30 GB 16 15 h 30min

Bazam (no sharding) 68 GB 28 GB 16 14 h, 55
min

Bazam 10-way
sharding

102 GB 20 GB 160 1 h, 11 min
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caused by ambiguously positioned reads aligning differ-
ently due to altered input order. Consistent with this hy-
pothesis, we identified that of the repositioned reads,
92.8% had mapping quality of 30 or less, suggesting their
alignments are subject to significant ambiguity. We in-
vestigated the moved reads that had high mapping qual-
ity and observed that many of the these were mapped to
repeat masker regions (Additional file 1: Table S1) and
in many cases were in fact subject to ambiguity despite
receiving high mapping quality from BWA. Based on
these results, we concluded that Bazam realignment has
a minimal effect on reads with unambiguous mapping
positions, and while reads with ambiguous positions
may be repositioned, this is likely due to known behavior
of BWA, rather than Bazam itself.

Application to repeat expansion calling
As an example of Bazam’s utility for aiding downstream
analysis tools such as complex variant calling, we applied
Bazam to STRetch [8], a method for detection of short tan-
dem repeat expansions (STRs) in genomic data. The first
step in STRetch selects reads aligning to more than
400,000 known STR repeat regions (as well as any un-
mapped reads) and then realigns these reads to artificial
decoy sequences containing short tandem repeats. When
run on pre-aligned data, STRetch extracts all reads within
800 bp of each known STR region. This window is chosen
to be wide enough to capture both reads of the majority of
pairs that fall into the STR region. Nonetheless, some pairs
are mapped widely enough apart that they may be missed.
We replaced this implementation with Bazam’s local ex-
traction feature and tested the accuracy and efficiency.
When run using the default read extraction method

on the same whole genome sample, STRetch took 6 h
and 7min. The unsharded Bazam method reduced the
time required to 2 h and 27min. This improvement is
achieved partly by avoiding intermediate FASTQ extrac-
tion, but also by eliminating the additional window re-
quired for scanning of candidate STR reads. Bazam
makes the expanded window unnecessary because it
guarantees to output both reads of a pair, even if only
one overlaps the extraction window, demonstrating the
utility of the localized extraction feature. When run
using sharded mode with six copies of BWA, STRetch
finished in 1 h and 24 min. STRetch primarily derives its
sensitivity from its ability to align reads from STR re-
gions to the decoy sequences. Hence, we compared
STRetch performance between Bazam and standard
alignment methods by counting the reads that were
aligned to each decoy sequence. We found that Bazam
was able to align 3.4% more reads to the decoy se-
quences than the standard alignment process. Therefore,
we conclude that alignment using Bazam increases both
speed and accuracy in the case of STRetch.

Wider applications
While we have primarily developed Bazam with realign-
ment in mind, any application where paired reads are
needed can benefit. In particular, we note that many al-
gorithms for complex and structural variant calling are
highly dependent on read pair information and hence
could benefit from building on this method. Quality
control statistics derived from read pair information can
also be calculated more efficiently using Bazam than
standard methods. Finally, the ability to tag read names
with previous alignment information is also useful for
benchmarking and comparing alignment software.

Conclusion
Bazam offers a simple, yet effective, tool that enables a
significant increase in efficiency and decrease in time re-
quired to realign existing genomic data. This has wide-
spread practical utility, as the need to reprocess data
onto new genome builds with updated alignment soft-
ware is becoming increasingly prevalent. Bazam also has
many other potential uses for applications where full
read pair information is needed, especially where extrac-
tion from localized regions of the genome is of interest.
Bazam is open source software and is available at
https://github.com/ssadedin/bazam.

Methods
Software implementation
Bazam is implemented using Groovy, a modern language
derived from Java and which shares most properties with
Java including platform independence and very high per-
formance. Bazam uses HTSJDK (https://github.com/
samtools/htsjdk) for the underlying BAM and CRAM
parsing operations. To enable high concurrency, Bazam
employs actor-based concurrency based on the GPars
framework (http://www.gpars.org/).
Source code for Bazam used in producing the results

presented is available at https://doi.org/10.5281/zenodo.
2590831 and is freely available under the Lesser General
Public License (LGPL). Methods can be found at https://
gitlab.com/ssadedin/bazam-paper-methods.

Additional file

Additional file 1: Table S1. Additional details of the methods, data
sources and statistics regarding realignment of reads. (DOCX 21 kb)
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