
METHOD Open Access

Topconfects: a package for confident effect
sizes in differential expression analysis
provides a more biologically useful ranked
gene list
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Abstract

Differential gene expression analysis may discover a set of genes too large to easily investigate, so a means of
ranking genes by biological interest level is desired. p values are frequently abused for this purpose. As an alternative,
we propose a method of ranking by confidence bounds on the log fold change, based on the previously developed
TREAT test. These confidence bounds provide guaranteed false discovery rate and false coverage-statement rate
control. When applied to a breast cancer dataset, the top-ranked genes by Topconfects emphasize markedly different
biological processes compared to the top-ranked genes by p value.
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Background
Misunderstanding and abuse of p values has led to wide-
spread debate and proposals for the adoption of alterna-
tives [1–3]. One moderate proposal is to switch from the
reporting of p values to the reporting of confidence inter-
vals (CIs) [4]. This is a shift of emphasis from a dichotom-
ous division between zero and non-zero effect size to
estimating the effect size and placing confidence bounds
on this estimate. CIs are based on the same underlying
theory as p values, providing control of the type I error
probability (the probability of the false rejection of a true
hypothesis) [5]. For example, Cochrane ([6], section
12.4.1) uses CIs to judge whether an intervention has not
just a non-zero effect but confidently a clinically useful ef-
fect. The widely used Publication Manual of the American
Psychological Association ([7], section 2.07) recommends
giving estimated effect sizes and strongly recommends
that these be accompanied by CIs, with effect sizes to be

given in the original units and possibly also in a standard-
ized form such as Cohen’s d.
One area this shift has not yet occurred is in differen-

tial expression analysis of microarray and RNA-Seq data.
Here, the effect size of interest is generally the log2 fold
change (LFC) in the relative RNA abundance of each
gene between two groups of biological samples. A pos-
sible reason is that due to the large number of genes
tested, multiple testing correction is necessary in differ-
ential expression analysis in order to maintain a false
discovery rate (FDR) [8]. The dependence of FDR con-
trol on the number of discoveries made makes it difficult
to reconcile with the use of CIs. An alternative would be
to control the family-wise error rate (FWER) using a
Bonferroni correction, which has a straightforward cor-
responding Bonferroni correction for CIs. However, un-
less conclusions depend on every single CI being
correct, controlling the FWER is unnecessarily strict. A
final possibility is a procedure that declares a certain
number of discoveries made based on some criterion
and then reports false coverage-statement rate (FCR)
corrected CIs for the selected genes [9]. This has been
implemented in the context of differential gene expres-
sion [10], with the criterion being that the genes have
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non-zero differential expression with a given FDR. An
appealing feature of this approach is that the confidence
intervals of discovered genes at most touch but never
pass through zero LFC.
Considering the current p value-based practice, de-

pending on the nature of the experiment, quality of the
data produced, and the chosen FDR, the number of sig-
nificantly differentially expressed genes discovered may
range from just a few to thousands. However, a re-
searcher may only have resources to follow up a limited
number of genes, so that thousands of discoveries
present a problem. Moreover, many genes that pass this
statistical test for significance may not be sufficiently
changed to be of biological significance. It is important
therefore to have a way to rank genes by interest level.
A common default presentation of differential expres-

sion analysis results is to list genes in order of an “FDR
adjusted p value.” The researcher may choose a cutoff
value for this adjusted p value, producing a set of genes
with that FDR. This then gives the researcher a means
to select as many genes as they are able to further inves-
tigate: read down the list until the desired number of
genes is obtained. However, statistical significance is not
the same as a biologically meaningful effect size. It may
be that in order to obtain a manageable set of genes by
this method, the researcher chooses a far smaller FDR
than they actually require. Genes may as easily be
chosen by this method for low biological and technical
variation as for a large LFC.
A temptation is to select a set of genes by a reasonable

FDR threshold and then apply a further ad hoc filtering
step to obtain a reasonably sized subset. It is a common
practice to perform such filtering on the basis of esti-
mated LFC, but better might be to use the inner end of
a confidence interval. However this is done, no statistical
guarantee about the LFCs is given beyond that that they
are non-zero. If FCR-corrected confidence intervals were
used to select the subset, these would also no longer be
valid for that subset.
McCarthy and Smyth [11] propose a principled solu-

tion to the problem of too many discoveries with their
TREAT method. The researcher nominates a minimum
LFC effect size of interest. The TREAT method finds
genes with a magnitude of effect size larger than this.
Again, the researcher is presented with a list in order of
adjusted p value and may make the final choice of FDR.
However, how to choose the minimum effect size with
TREAT is not necessarily obvious. On the other hand,
the researcher may well be able to nominate an accept-
able FDR (5% is a common choice).
Therefore, we describe here a new approach to the

presentation of TREAT results in which the FDR is
fixed, and genes are presented in order of a quantity we
call the “confident effect size” or “confect.” If a set of

genes is chosen having a magnitude of confect greater
than or equal to some amount, we guarantee with the
given FDR that those genes will have a true LFC magni-
tude greater than that chosen amount. The researcher is
then easily able to choose a desired effect size of interest
to follow up and is never presented with unreasonably
small adjusted p values. Furthermore, once a set of genes
is chosen, the confect values provide confidence bounds
with a controlled FCR. This form of presentation is “test
inversion,” converting hypothesis testing into a confi-
dence bound calculation, however with a novel feature
being the incorporation of FDR control. The confect
ranking solves two problems at once, giving confidence
bounds with an appropriate level of multiple testing cor-
rection and simultaneously providing a ranking of genes
by confident effect size.
We show using synthetic data that the confect ranking

method scales across experiment sizes. The method is
then applied to a cancer dataset, which has a high degree
of heteroscedasticity between genes. The confect ranking
method, as compared to the p value ranking method,
leads to a markedly different emphasis on affected bio-
logical processes.

Results
Confect ranking matches or outperforms alternative
ranking methods in simulated data
To test the performance of the confect ranking method
against alternative ranking methods, we generated simu-
lated datasets with between 2 and 128 replicates per
group, with parameters as described in the “Methods” sec-
tion. Two simulations were performed. In simulation 1,
the parameters were chosen to emphasize differences be-
tween ranking methods, and in particular, the
within-group variance has been made to vary greatly be-
tween genes. In simulation 2, the parameters were chosen
to match the cancer dataset to be examined next. As the
data is simulated, the true LFC for each gene and the cor-
rect ranking of genes by the magnitude of LFC is known,
and results from different ranking methods may be com-
pared to this true ranking. The percentage of correct
genes in the top 20, 100, and 500 genes were calculated.
Results from simulation 1 are shown in Fig. 1a and from
simulation 2 are shown in Fig. 2a. Complete simulation in-
puts and results are available from [12].
Although it is probably the most common approach to

the analysis of differential gene expression, p value-based
ranking (a) did not perform well in either simulation, nor
should it be expected to as p values are not an indication
of LFC effect size.
Confect ranking at 5% FDR (b) performs well. In

simulation 1 for experiments with small numbers of
replicates, this is due to falling back to ranking by
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the p value for the gene having non-zero LFC (shown as a
gray bar in Fig. 1).
Interestingly, the naive method of ranking based on the

inner end of a CI (c) also performed well for the purpose
of ranking genes. The only place it performed worse than
confect ranking was in simulation 1 for small numbers of
replicates. This does not however provide control over
false discoveries. The inner end of a FWER-corrected CI

(d) performed less well than either the confects methods
(b) or the unadjusted intervals (c).
TREAT p value-based ranking (e, f ) may be tuned to

perform well when finding a certain number of top
genes, but is not a good general ranking scheme. This is
as expected. The point of the confect value calculation is
to modify the presentation of TREAT results to correct
this shortcoming.

B

A

Fig. 1 Results of simulation 1. a Proportion of top genes correct by various ranking methods in the top 20, 100, and 500 genes. Where genes
were correct only because the ranking method fell back to ranking by limma p value, this is shown in gray. b Achieved FCR and FDR for different LFC
thresholds by the confect method for a target FDR or 5%. Below the graphs, “LFC threshold” is the threshold used to select a set of genes; “True
genes” is the number of genes with LFC truly exceeding this threshold. “Correct coverage” is the number of genes discovered and with true LFC
correctly covered by the confidence bound. “False coverage” is the number of genes discovered but with true LFC outside the confidence bound.
The sum of these last two numbers is the total number of discoveries at that threshold. All results are averaged over 100 simulations
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The estimated LFC (g) performed worst in simulation
1, but performed well in simulation 2. This is because in
simulation 1 some genes with very high within-group
variability will have randomly had a large estimated LFC,
displacing the genes with truly large LFC. In simulation
2, the differences in variability between genes are much
less pronounced.

Confect confidence bounds provide FDR and FCR control
in simulated data
Selecting a set of genes with absolute confect value ex-
ceeding some threshold e, the resulting genes should
truly exceed this absolute LFC, with controlled false

discovery rate. Furthermore, the confect values when
considered as confidence bounds for the selected genes
should achieve a controlled false coverage-statement
rate. A false coverage-statement has been made if the
sign is incorrect or the magnitude of the confect is larger
than the true LFC. Achieved FDR and FCR are assessed
at different thresholds for the two simulations in Figs. 1b
and 2b. Ideally, achieved FDR and FCR would match the
nominal level of 5%, but it can be seen that they fall
below this. Fewer false discoveries and coverage state-
ments are made than is allowed, and some potential fur-
ther true discoveries may have been missed. There are
two major reasons for this. Firstly, the TREAT method is

A

B

Fig. 2 a, b Results of simulation 2. The layout is the same as in Fig. 1
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conservative. It must produce p values for the worst case
of a true LFC at the edge of the null hypothesis region,
but in these simulations, the actual LFCs are clustered
near zero, far from the edge of the null hypothesis region.
Secondly, the confidence bounds provided by confects
must work with all possible thresholds, and so have a lar-
ger adjustment than is required by Benjamini and Yekutie-
li’s rule [9] after a specific threshold is chosen.
The performance of the confect method is compared to

inner bounds from FWER-adjusted CIs and unadjusted
CIs in Additional file 1: Figures S1 and S2. FWER adjust-
ment also provides FDR and FCR control but, as can be
seen, it falls even further below the 5% level. Bounds from
unadjusted CIs do not provide FDR or FCR control.

In a cancer dataset, sorting by confident effect size rather
than p value highlights different biological pathways
To understand how ranking by confect rather than p value
impacts the interpretation of real experimental data, we
turned to tumor-normal comparisons of breast cancer pa-
tients (BRCA) within the The Cancer Genome Atlas
(TCGA). With this breast cancer dataset, limma assigns
low prior degrees of freedom of 3.6, indicating a high de-
gree of heteroscedasticity: different genes have very differ-
ent levels of variability. The variance moderation applied
here by limma is minor in relation to the 96 residual de-
grees of freedom.
Of the 17,932 genes tested, 13,784 are found to be dif-

ferentially expressed at 5% FDR (this also means 13,784

genes are given a confect value at 5% FDR). Such a large
list is of little use to a biologist prioritizing genes for fur-
ther investigation. Therefore, we compared the top 20
genes ranked by confect at 5% FDR (Fig. 3) and the top
20 genes ranked by limma p value (Fig. 4). The full rank-
ings are included in Additional files 2 and 3, respectively.
The facetted plots to the right of the main listing in
these figures show the raw data for each gene. The two
methods of ranking have highlighted very different pat-
terns of gene expression. Ranking by confect, the top
genes have large LFC. The variability in LFC between
patients is high in these genes; however, the confect
values are also large, giving confidence that the popula-
tion average LFC is truly large. Note that sets of genes at
the top of the confect ranking can be obtained using the
TREAT method directly. For example, the top 10 genes
would be obtained using TREAT with an LFC threshold
of 4.8 (the absolute confect value for the 10th gene in
the ranking). However, arriving at this threshold without
using confect values would require trial and error.
Examining the ranking by p value, the top genes may

have smaller average LFCs if the LFC also has smaller
variability between patients. Examples of such genes are
NEK2 and KIF4A, both involved in chromosome segre-
gation for cell division.
Gene set enrichment was searched for using the R

package fgsea. There were 5182 GO Biological Process
gene sets available with between 15 and 2000 genes. At
5% FDR, 453 of these gene sets are significantly enriched

Fig. 3 Top 20 genes by confect ranking of the breast cancer dataset at 5% FDR. For each gene, the dot shows the estimated LFC and the line
shows the “confect” confidence bound. To the right, normal and tumor expression levels for all patients are shown for each listed gene
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when ranking genes by p value, and 1294 are signifi-
cantly enriched when ranking by confect. This is too
many gene sets to reasonably examine, so the Normal-
ized Enrichment Score effect size was used to find the
top enriched gene sets. Table 1 shows the top 10
enriched gene sets for both ranking methods. For the p
value ranking, the emphasis is on processes associated
with cell division as can be expected for oncological cell
transformation. For the confect ranking however, a var-
iety of biological processes are found at the top of the
list, including cell-cell signaling and blood vessel devel-
opment suggestive of the tumor micro-environment.
Also notable is the presence of genes involved in the
extra-cellular matrix in the top 20 genes, including two
collagen (COL10A1, COL11A1) and three matrix metal-
loproteinase genes (MMP13, MMP11, MMP1). Only
three of these are seen in the top 20 genes by p value.
Few biological experiments contain the very large num-

ber of samples present in consortia data such as the TCGA.
A smaller dataset may be simulated by taking a random
subset of patients. Results using a random subset of 10 pa-
tients are shown in Fig. 5 (see also Additional file 4). For
the top-ranked genes, the confect values are a much
smaller fraction of the effect sizes than with the full dataset.
Not all of the genes with large effect sizes found in the full
dataset are near the top of the list in this subset, and some
genes with smaller effect sizes have been “lucky” and are
highly ranked, such as COMP (jumping from 45th in the
full dataset to 3rd in the subset). “Luck” of this kind is

inevitable in a small dataset with this level of heteroscedas-
ticity, and the small confect values warn that this is occur-
ring. Similarly, by conventional p value-based differential
expression analysis, genes in an underpowered experiment
would need a combination of a large effect size and a cer-
tain amount of luck to be declared significantly DE. Also
note that if TREAT were being used directly, the LFC
threshold would need to be adjusted between the full data-
set and the subset in order to obtain a set of genes of rea-
sonable size. The LFC threshold in TREAT may be viewed
as a threshold on the confidence bound and not the effect
size itself and hence needs to be adjusted to suit the size of
the experiment. The confect ranking method removes this
need for parameter adjustment.

Discussion
The effect size used here was the LFC, with the
intention of finding changes in expression with a large
biological effect. The confect ranking method identifies
genes with confidently large LFC. This places all genes
on the same scale, and this scale has meaningful units of
log2 fold change.
Can a case for using p values as an effect size be

made? What follows is an attempt. In fields such as
psychology where the thing being measured may not
have a scale with meaningful units or where there may
be a number of different scales on which something may
be measured, standardized effect sizes are used. Cohen’s
d is one such standardized effect size. Cohen’s d is the

Fig. 4 Top 20 genes by limma p value-based ranking of the breast cancer dataset. p values shown are FDR adjusted
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Fig. 5 Top 20 genes by confect ranking of the breast cancer dataset at 5% FDR, using only 10 patients’ data. In the individual gene expression
plots to the right, selected patients are shown as black dots and the remaining patients are shown as gray dots

Table 1 Top-enriched GO biological process gene sets by NES, based on p value and confect rankings. Columns “Up” and “Down”
are the percent significantly upregulated and downregulated genes in the cancer samples at 5% FDR

Ranking method GO term Description NES Genes Up (%) Down (%)

p value GO:0051301 Cell division 4.81 582 54 30

GO:0000819 Sister chromatid segregation 4.42 232 65 20

GO:0007049 Cell cycle 4.41 1778 48 34

GO:0022402 Cell cycle process 4.35 1309 50 32

GO:0007059 Chromosome segregation 4.34 344 60 23

GO:0098813 Nuclear chromosome segregation 4.18 295 60 23

GO:0000070 Mitotic sister chromatid segregation 4.12 149 62 21

GO:1903047 Mitotic cell cycle process 4.08 826 54 28

GO:0000278 Mitotic cell cycle 3.99 1003 52 30

GO:0006334 Nucleosome assembly 3.86 106 74 18

Confect GO:0003008 System process 6.32 1472 26 52

GO:0007186 G protein-coupled receptor signaling pathway 5.35 771 29 51

GO:0009888 Tissue development 5.23 1686 36 43

GO:0035295 Tube development 5.16 918 31 47

GO:0007267 Cell-cell signaling 5.11 1481 35 45

GO:0048646 Anatomical structure formation involved in morphogenesis 4.92 971 32 48

GO:0001568 Blood vessel development 4.87 608 29 52

GO:0006928 Movement of cell or subcellular component 4.85 1815 35 44

GO:0040011 Locomotion 4.85 1578 35 45

GO:0010469 Regulation of signaling receptor activity 4.84 413 34 47
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ratio of an effect size to some appropriate standard devi-
ation (several choices are possible [4, 13]). Applied to
differential gene expression, a problem is that each gene
has its own standard deviation and is therefore effect-
ively placed on a different scale, but a situation where
comparing Cohen’s d between genes might be appropri-
ate would be to identify reliable prognostic biomarkers,
where the interest is in genes for which the signal ex-
ceeds the background noise level. Leaving aside the use
of variance moderation in limma, and when the standard
deviation used is the residual standard deviation of the
linear model used, Cohen’s d is proportional to the t
statistic, and p is a monotonic function of ∣t∣, so p
values can serve as a kind of standardized effect size, al-
beit one that is not comparable between experiments of
different sizes. While the p values shown in Fig. 4 are
meaninglessly small when considered as p values, they
may have some meaning when considered in this way.
In the breast cancer dataset, the different ranking

methods lead to an emphasis on different biological pro-
cesses, both in the top-ranked genes and in downstream
gene set enrichment analysis. The difference may be
largely explained by the difference in ranking between
Cohen’s d and LFC effect sizes. The common practice of
using the t statistic for gene set enrichment tests is also
effectively a choice to use Cohen’s d, as discussed above.
By concentrating on the top 20 genes in the cancer

dataset, confidence bounds on gene LFCs were select-
ively reported. When unadjusted confidence bounds are
selectively reported, they can become invalid, but the
FCR control provided by the confects method ensures
that the confidence bounds it provides can still be
trusted when only top-ranked genes are selected.
limma’s TREAT method was used here as the basis of

the confect calculation. The TREAT method has been
extended to negative binomial generalized linear models
(GLMs) and quasi-likelihood models in the edgeR R
package’s glmTreat function, specifically the null
= “worst.case” mode [14]. The DESeq2 R package
[15] also provides a suitable test relative to a threshold for
negative binomial GLMs using the result function in
altHypothesis = “greaterAbs” mode. Confect cal-
culation based on these methods is also supported by our
topconfects R package.
The approach taken here has been frequentist, aside

from the use of Empirical Bayes moderation of variance.
FDR control has two potential Bayesian analogs. One is
the “local fdr” [16, 17], the probability of the LFC being
zero. This has the drawback of requiring dichotomous
prior beliefs in which there is non-zero probability of the
LFC being exactly zero. Earlier we noted that a signifi-
cant rejection of the hypothesis that the LFC is zero also
implies that the sign of the LFC is confidently known.
This leads to a second Bayesian analog, the probability

of having falsely called the sign of an LFC, which can be
used to control the “Type S” error rate [18]. A Bayesian
analog to confect values would be credible bounds on
LFCs. As with local fdr and false sign probabilities, the
key to this is a hierarchical model in which the prior dis-
tribution of LFCs is modeled accurately. It is not clear
what the correct form of distribution of LFCs is, so this
needs a statement of prior beliefs that accommodates
many possibilities. As was seen here in the cancer data,
different gene sets may have different distributions of
LFCs, and a fully accurate statement of prior beliefs
might also take this into account. DESeq2 has recently
added Bayesian “False Sign Or Small” probabilities and
shrunken LFC estimates based on modeling the distribu-
tion of LFCs using either the apeglm [19] or ashr [20]
packages. The output of credible bounds would be a
simple alternative presentation of the underlying poster-
ior distributions here.
The FCR achieved by the method described here fell

short of the nominal FCR (the confidence bounds were
conservative), and a Bayesian approach may remedy this.

Conclusions
The confect ranking method described here makes good
use of any amount and quality of data. There is only one
parameter, the desired FDR, for which a sensible default
can be given. The resulting confect quantities are used
in a similar way to FDR adjusted p values to select a set
of genes of interest and have some similar properties.
However, confect values are in the same units as the ef-
fect size (here LFC), making them easier to interpret.
Comparing confect values to estimated LFC values pro-
vides feedback on whether or not an experiment was
underpowered. The common practice of performing an
ad hoc filtering step by estimated LFC is no longer ne-
cessary, and compared to TREAT, which provides a
more principled method of filtering by LFC, even the
need to provide a threshold is removed. Overall, this
method of differential expression analysis has improved
usability, with less expertise required in the choice of pa-
rameters and in interpretation.

Methods
The confidence bound calculation requires as input a
p value function pi(e) for each gene i, 1 ≤ i ≤ ngene, for a
test of the null hypothesis that the absolute effect size is at
most e. pi(e) will be a non-decreasing function of e. The
TREAT method [11] provides a suitable p value function,
with the effect size being LFC. The limma R package [21]
provides an implementation of this in the treat
function.
In the following section, TREAT will be described.

Next, confidence bounds derived from TREAT are con-
sidered for a fixed significance level cutoff α. Finally, this
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is extended to FDR control, in which confidence bounds
are found with a dynamic significance level cutoff.

TREAT
Let xi be the estimated LFC of the ith gene, and si the
estimate’s standard error with d degrees of freedom.
TREAT is a replacement for the t tests usually per-
formed by the limma method of differential expression
analysis [21] and makes the same adjustments to si and
d to incorporate Empirical Bayes prior information. e is
the LFC threshold being tested. Let F be the cumulative
distribution function of the t distribution with d degrees
of freedom. The TREAT p value, from [11], is

pi eð Þ ¼ 1−F
xij j−e
si

� �
þ 1−F

xij j þ e
si

� �

An example of the shape of this function is shown in
Fig. 6a. For the case of e = 0, the p value is the same as
for a two-sided t test. We now check that this is a
non-decreasing function of e. The derivative of F is the
probability density function of the t distribution:

F 0 tð Þ ¼
Γ

d þ 1
2

� �

ffiffiffiffiffiffi
dπ

p
Γ

d
2

� � 1þ t2

d

� �−dþ1
2

All that is needed is to observe that this is a decreasing
function of t2. Now taking the derivative of pi(e) with re-
spect to e,

p0i eð Þ ¼ 1
si
F 0 xij j−e

si

� �
−
1
si
F 0 xij j þ e

si

� �

e ≥ 0 and assuming si > 0, it must be that ðjxij−esi
Þ2≤ðjxijþe

si
Þ2 .

Therefore, p0iðeÞ≥0 , and therefore, pi(e) is a non-
decreasing function of e.

Confidence bounds from TREAT
There is a close relationship between CIs and p values.
For example, considering the two-sided t test of the null
hypothesis that the LFC of a gene is e, the null hypoth-
esis is not rejected for values of e where pt − test(e) > α,
and these values then form a 1 − α confidence interval.
Similarly, a confidence bound can be obtained from the
one-sided t test. This is called test inversion.
Note in particular that a significant result on a t test

for e = 0 not only establishes that the LFC is non-zero,
but also establishes that the sign of the LFC is known,
since the corresponding confidence interval will lie
either entirely above or below 0.
In the case of TREAT, the null hypothesis is that the

LFC lies inside the range [−e, e]. Thus, TREAT p values
are always larger than those from the t test that the LFC
is 0, and a significant TREAT result determines the sign
of the LFC. Taking the small liberty of considering that
these two properties hold simultaneously, we view the
largest e for which pi(e) ≤ α as providing a confidence
bound, establishing either that the LFC is greater than e,
or establishing that it is less than −e.

Calculation of confects
Using TREAT, and making the assumption that each
gene is independent of the others, a set of genes with a
magnitude of effect size exceeding e at a given FDR q
may be obtained using the procedure of Benjamini and
Hochberg [8]. Benjamini and Hochberg’s procedure is to
find the largest set S(e) satisfying

A B

Fig. 6 a TREAT p value (pi(e)) as a function of LFC (e), for xi = 5, si = 1, d = 10. A 95% lower confidence bound on the effect size can be found
from the e at which pi(e) = 0.05. b Illustration of ranking method. Sets S(e) are sets of genes with effect size significantly exceeding threshold e at
some desired FDR. These sets nest, providing a ranking of genes. From this diagram, the resulting confect values would be 1.5, 1, 1, 0.5, 0.5, 0.5,
and 0 and with no value given to the final two genes
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S eð Þ ¼ i : pi eð Þ≤ j S eð Þ j
ngene

q

� �

Sets for different effect sizes nest. If e > e′, then S(e)⊆
S(e′). Genes may drop out of S(e) as e increases for two
reasons. Firstly, pi(e) may rise above the threshold for in-
clusion in the set. Secondly, the threshold for inculsion
in the set is a function of the size of the set ∣S(e)∣, so as
the set becomes smaller, the threshold also becomes
stricter. Thus, as one gene drops out several more may
also need to immediately be dropped.
Let ∣ci∣ be the largest e such that i ∈ S(e), and let the

sign of ci be the actual sign of the estimated effect. We
call this quantity the “confect,” for confident effect size.
In our implementation, when computing ci, we scan
through a discrete set of effect sizes, by default consider-
ing e = 0, 0.01, 0.02, 0.03, … until S(e) is empty.
By presenting genes in order from largest to smallest

∣ci∣, the researcher may easily choose an effect size
resulting in a set of genes S(e) of a size suitable for their
purpose. It may happen that some genes have the same
∣ci∣, and in order to obtain a total order, we sort these
by pi(e) at the first e for which they are not in S(e). Some
genes are not a member of any set and are not given a
confect. These are listed last, in order of pi(0) (the p
value given by limma without using TREAT). An illus-
tration of this method is shown in Fig. 6b.
The overall effect of this procedure is to provide a lower

confidence bound on the magnitude of LFC for each gene,
but with a higher level of confidence required for the lar-
ger effect sizes at the top of the list than for the smaller ef-
fect sizes lower down the list. This idea is made precise in
the next section. Further, the set {i:| ci| ≥e} is precisely S(e)
and is always at the top of the ordering.
R code implementing this procedure is provided at

https://github.com/pfh/topconfects.

Relationship to false coverage-statement rate (FCR)
If a set of genes are selected, by any selection rule, FCR
controlling confidence intervals or bounds for the selected
genes may be constructed using a rule described by Benja-
mini and Yekutieli [9]. This rule is that to ensure an FCR
of q with nselected genes selected, each confidence region
must have coverage probability no less than 1− nselected

ngene
q .

Based on the preceding discussion, for confect confidence
bounds, this is achieved if piðjcijÞ≤ nselected

ngene
q.

Suppose a set of genes are selected based on having an
absolute confect value of at least e. That is, they are the
members of S(e) and nselected = |S(e)|. Then, for each
gene i in the set, we have a confect value ci derived from
membership in a set S(|ci|), |ci| ≥ e, and by the nesting of
sets |S(|ci|)| ≤ nselected. By the definition of the members
of the sets, we have

pi cij jð Þ≤ S cij jð Þj j
ngene

q≤
nselected
ngene

q

Therefore, the coverage probability of each gene in the
set is sufficient to control the FCR.

Evaluation with synthetic data
Simulated data for ngene genes is generated for two
equally sized groups with nrep samples within each
group. We follow the distributional assumption of limma
[21] that the gene-wise within-group variances σ2

i follow
a scaled inverse chi-square distribution with degrees of
freedom dwithin and scale parameter swithin.

dwithins2within
σ2i

� χ2dwithin

limma’s calculation of p values, both normally and with
the TREAT method, do not depend on any assumption
about the distribution of LFC. limma’s calculation of the
posterior log-odds B statistic does make such assump-
tions, specifically that there are a set of genes that are
not differentially expressed, and the ratio of LFC to σi
for the differentially expressed genes follows a specific
distribution. This B statistic is not used here. The intent
of this paper is to move from the dichotomous mode of
thinking associated with p values to the estimation mode
of thinking associated with effect sizes [4], so our simu-
lations do not assume any gene has precisely zero LFC.
However, in a typical experiment, some genes are differ-
entially expressed to a much greater extent than the
majority.
Two simulations were performed, with different distri-

butions of LFCs. “Simulation 1” investigates the scenario
of large LFCs in some genes and large within-group vari-
ances in some genes, in order to best demonstrate differ-
ences between ranking methods. “Simulation 2” is a less
variable simulation based on the cancer dataset de-
scribed in the next section.
In simulation 1, we use a distribution of LFCs βi with

tails following a power law, specifically a scaled t distri-
bution with dbetween degrees of freedom and scaling fac-
tor sbetween.

βi
sbetween

∼t dbetweenð Þ

In particular, the values used for the simulation were
ngene = 15000, nrep = 2, 3, 4, 8, 16, 32, 64 and 128, dwithin = 2,
swithin = 0.75, dbetween = 3, and sbetween = 0.5. Note in particu-
lar that dwithin has been chosen to be extremely small,
which will generate a highly heteroscedastic dataset, in
order to emphasize differences between different ways
of ranking genes. Results are averaged over 100 runs of
the simulation.
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In simulation 2, we approximated the distribution of
LFCs and residual variances seen in the cancer dataset
described in the next section. A t distribution was not a
good fit to the LFCs in this data, and a Laplace distribu-
tion was found to be a better fit. This has exponential
rather than power-law tails.

βi � Laplace 0; sbetweenð Þ

In particular, the values used for simulation 2 were
ngene = 15000, nrep = 2, 3, 4, 8, 16, 32, 64 and 128, dwithin = 5,
swithin = 0.5, and sbetween = 0.8. When choosing these values,
maximum likelihood estimation was tried but did not
lead to a good match to the tails of the cancer dataset
distributions, so these values have been manually
chosen to better match the tails of these distributions
(shown in Additional file 1: Figure S3). Again, dwithin is
an important parameter, and the higher value used here
results in lower heteroscedasticity. Results are again av-
eraged over 100 runs of the simulation.
Seven different methods of ranking genes are compared:

(a) Ranking by limma p value. Ranking by p value is a
common default output of differential expression
software.

(b) Confect ranking at 5% FDR. This is the proposed
method, with a reasonable choice of FDR.

(c) Ranking by the inner end of a 95% CI. Where the
CIs span zero, genes are further ranked by limma
p value. While this does not control the FDR, its
accuracy as a ranking method is of interest.

(d) Ranking by the inner end of a Bonferroni-corrected
CI maintaining a FWER of 5%. Where the CIs span
zero, genes are further ranked by limma p value.
This is a very strict correction for multiple testing.

(e) Ranking by TREAT p value with LFC threshold
1.0. While not a general ranking by LFC effect size,
this should serve to distinguish genes having LFC
magnitude exceeding 1.0 from those that do not.

(f ) Ranking by TREAT p value with LFC threshold 5.0.
(g) Ranking by the magnitude of the LFC estimated by

limma. If the noise level σ2i was uniform over all
genes, this would be the ideal ranking method.
The ranking methods that perform better than this
one will do so based on their ability to adapt to
heteroscedasticity.

Evaluation with cancer data
RNA-Seq read counts for genes for 97 tumor-normal
pairs from the TCGA BRCA breast cancer dataset were
obtained from FireBrowse [22]. There was an average of
85 million reads counted per sample. The edgeR R pack-
age (version 3.22.5) was used to estimate TMM-adjusted
library sizes [23]. Genes with less than an average of 0.1

reads per million (RPM) were removed from further
processing. The limma function voom was then used to
convert the count data to log2 RPM, with associated
observation-level weights. The limma R package (version
3.36.5) was then used to fit linear models for each gene
suitable for performing a paired-sample test for differen-
tial expression between tumor and normal samples [21],
and Empirical Bayes variance moderation was applied.
The method described above was then used to calculate
confect values and rank genes, using a target FDR of 5%.

Gene set enrichment
In order to better understand the biological processes
emphasized by different methods of ranking genes, R
package fgsea (version 1.6.0) was used to find enriched
gene sets associated with Gene Ontology (GO) biological
process terms [24]. fgsea implements the gene set en-
richment analysis (GSEA) method, in particular the vari-
ant of the method for a pre-ranked list of genes [25].
The exponent parameter p is set to 0, so that the results
are based purely on the ranking, and not on any associ-
ated scores. The effect size used to rank gene sets was
the normalized enrichment score (NES) produced by
this method. A p value testing whether the NES is
non-zero is available from fgsea, but unfortunately no
confidence interval. Gene sets containing between 15
and 2000 genes were considered. Ten thousand permu-
tations were used when calculating p values.

Additional files

Additional file 1: Additional figures. Additional figures giving more
details on the simulation results. (PDF 2197 kb)

Additional file 2: Complete confect ranking of breast cancer dataset.
Confect ranking of breast cancer dataset at 5% FDR. (CSV 1085 kb)

Additional file 3: Complete p value-based ranking of breast cancer
dataset. p value ranking of the breast cancer dataset. (CSV 1355 kb)

Additional file 4: Confect ranking of breast cancer dataset with 10
patients. Confect ranking using data only from 10 randomly selected
patients. (CSV 1053 kb)
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