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Interactive roles of chromatin regulation
and circadian clock function in plants
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Abstract

Circadian rhythms in transcription ultimately result in
oscillations of key biological processes. Understanding
how transcriptional rhythms are generated in plants
provides an opportunity for fine-tuning growth,
development, and responses to the environment.
Here, we present a succinct description of the
plant circadian clock, briefly reviewing a number of
recent studies but mostly emphasizing the components
and mechanisms connecting chromatin remodeling
with transcriptional regulation by the clock. The
possibility that intergenomic interactions govern
hybrid vigor through epigenetic changes at clock loci
and the function of epialleles controlling clock output
traits during crop domestication are also discussed.

Introduction
The Earth’s rotation around its axis leads to changes in
light and temperature that have shaped life over evolu-
tion. It is therefore not surprising to find 24-h rhythms
in physiology, metabolism, and development that oscil-
late in synch with the day and night cycles [1, 2]. A ro-
bust and yet flexible cellular machinery, the circadian
clock, generates the rhythms by integrating the environ-
mental cues and the temporal information into 24-h bio-
logical oscillations [1, 2]. As sessile organisms, plants
must effectively perceive and appropriately respond to
the changes in environmental conditions for proper
growth and survival [3, 4]. Consistently, it has become
increasingly clear that the circadian clock controls the
phase of a vast collection of pathways in plants.
A highly precise circadian clock function is crucial

for proper plant adaptation to the environment [5].

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: paloma.mas@cragenomica.es
3Center for Research in Agricultural Genomics (CRAG), Consortium
CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
4Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
Full list of author information is available at the end of the article

Genome-wide analyses have provided evidence of the
pervasive role of the clock controlling the rhythms of
a large fraction of the transcriptome [6–11]. The rhythms
in gene expression are transduced into oscillations of pro-
tein activities involved in a myriad of signaling pathways.
Germination, growth, development [12–15], and re-
sponses to abiotic [16, 17] and biotic [18, 19] stresses are
just a few of the many examples of processes controlled
by the plant circadian clock. Recent studies have expanded
the range of the pathways controlled by the clock. Indeed,
the repertoire of circadianly regulated processes also in-
cludes the regulation of other oscillators such as the cell
cycle. The study showed that circadian control of the cell
cycle is exerted by setting the time of DNA replication li-
censing [20]. Similarly, another recent study has shown
that the circadian clock regulates age-dependent and
dark-induced leaf senescence [21, 22]. The mechanisms
rely on the clock-controlled regulation of the positive
aging regulator ORESARA1 (ORE1) [21, 22] and on the re-
pression of miR164, a post-transcriptional repressor of
ORE1 [21]. Leaf senescence also relies on the function of
circadian clock components that gate the signaling of the
phytohormone jasmonate [23]. Overall, the circadian
clock ensures proper phasing of these biological processes
in consonance with the environment. The clock function
thus requires precise information on the environmental
fluctuations. This occurs through the activity of photore-
ceptors that perceive and transduce light and temperature
changes. Hence, the clock machinery exploits photorecep-
tor function for time-of-day information [24]. Resetting of
the clock by these environmental changes is assumed to
occur through changes in the expression and activity of
essential clock components [25].

Components and regulatory mechanisms of
circadian clock activity in Arabidopsis
The main Arabidopsis clock components entangle in a
complex regulatory network that generates rhythms in
expression and activity exerted at specific phases during
the day and night [26]. Briefly, the morning-expressed
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and partially redundant single MYB transcription factors
known as CCA1 (CIRCADIAN CLOCK ASSOCIATED1)
[27] and LHY (LATE ELONGATED HYPOCOTYL) [28]
repress the expression of the evening-expressed clock
genes during the day [26]. In turn, evening-expressed
clock components such as TOC1/PRR1 (TIMING OF
CAB2 EXPRESSION1/PSEUDO RESPONSE REGULA-
TOR1) [29, 30] repress the morning genes during the
night [31–33]. TOC1 belongs to a family of clock repres-
sors (including PRR9, PRR7, PRR5, and PRR3 in addition
to TOC1) that sequentially suppress CCA1 and LHY tran-
scription during the day [34]. Repression starts with PRR9
function at early midday and is subsequently followed by
PRR7 and PRR5 later in the day [34] and by TOC1 at dusk
and early evening [31–33]. TOC1 represses not only
CCA1 and LHY expression but also nearly all of the oscil-
lator components [35]. Other evening-expressed regula-
tors, including LUX (LUX ARRYTHMO), ELF3 (EARLY
FLOWERING3), and ELF4 (EARLY FLOWERING4),
form a protein complex (evening complex) that acts as a
repressor of the morning-expressed PRR clock genes [36–
40]. Repression of the PRR genes by evening complex per-
mits the rising phase of LHY and CCA1, which reach their
peak expression at dawn.
In addition to this battery of clock repressors, direct ac-

tivation of circadian gene expression relies on the function
of the single MYB REVEILLE/LHY-CCA1-LIKE (RVE/
LCL) transcription factors, which share a high sequence
homology with CCA1 and LHY, particularly in the MYB
domain [41]. RVE8, RVE6, and RVE4 directly interact with
the clock-related components known as LNKs (NIGHT
LIGHT-INDUCIBLE AND CLOCK-REGULATED) to ac-
tivate the expression of clock genes such as TOC1 and
PRR5 [42–47]. The mechanisms of regulation rely on
changes in chromatin modifications [42] and recruitment
of the basal transcriptional machinery to the circadian loci
[48]. Additional key clock components and post-transcrip-
tional and post-translational mechanisms of regulation en-
sure smooth shapes of the oscillatory waves, fine-tuning
the robustness and precision of the clock. Altogether, the
complex regulatory circadian network at the core of the
clock ensures that the morning and evening clock tran-
scripts precisely peak at their corresponding phases [26].
It was recently proposed that the complexity of the plant
circadian network might provide strength against extreme
environmental conditions [49].
Long-standing questions in plant circadian biology

deal with how the circadian clocks are organized within
the plant body and whether there are overarching signals
that synchronize the clocks in separate parts of the
plant. Nearly all cells possess clocks exhibiting various
degrees of synchronization. Early studies reported that
different rhythmic oscillations could be controlled by
separate oscillators [50] and that autonomous clocks

were able to regulate gene expression [51] in a tissue-spe-
cific manner [52, 53]. Despite the organ-specific
synchronization [54], long-distance signals are important
for clock synchronization in distal parts of the plant [55,
56]. Short-distance communication or circadian coupling
also plays a role in synchronization. The degree of coup-
ling varies depending on tissues and conditions. For in-
stance, cells at the vasculature present stronger coupling
than leaf cells [57, 58], which show only weak coupling
[59–61]. In root cells, a continuous resetting of the circa-
dian oscillations results in a stripe wave originating at the
root tip [62], which shows strong cell-to-cell coupling
[63]. Gould et al. [63] proposed that the variability in
coupling and period differences among different root cells
can explain the waves of clock activity in roots.
Synchronization in roots can also occur by light piping
from shoots [64]. The shoot apex represents a particular
example of short- and long-distance circadian communi-
cation, as rhythms at the shoot apex are highly synchro-
nized due to strong circadian coupling, and this function
is important for proper rhythms in roots [56].

Chromatin remodeling and transcriptional
regulation
Transcriptional rhythms underlie the circadian clock func-
tion at its basis. As transcriptional regulation is largely
dependent on chromatin status, understanding changes in
chromatin conformation is essential to fully comprehend
rhythms in transcription. Chromatin can be modified at
levels of DNA sequence, histones, and high-order chro-
matin structure and organization [65–67]. DNA methyla-
tion affects growth and development of plants and
animals in response to environmental cues [68–71] and is
essential for animal development [72]. Plants are more tol-
erant to mutations in DNA methylation pathways [68, 70],
and methylation mutants have few phenotypes, although
abnormal genetic lesions can develop over several genera-
tions of self-pollination [73]. Unlike in animals in which
methylation occurs almost exclusively in the CG context
[74], with a few exceptions in stem cells [75], methylation
in plants occurs in CG, CHG, and CHH (H = A, T or C)
contexts through distinct pathways [71]. In Arabidopsis,
METHYLTRANSFERASE 1 (MET1) and CHROMO-
METHYLASE 3 (CMT3) are responsible for the mainten-
ance of CG and CHG methylation, respectively [76–78].
CHH methylation is established de novo through two
pathways. One involves biogenesis of small interfering
RNAs (24-nt siRNAs) that require Nuclear RNA Polymer-
ase IV (D) Subunit1 (NRPD1) [79, 80] and are targeted to
corresponding genomic loci by ARGONAUTE (AGO)
family members (AGO4 and AGO6), which are methyl-
ated via DOMAINS REARRANGED METHYLTRANS-
FERASE2 (DRM2) [81, 82]. The other pathway requires
CHROMOMETHYLASE 2 (CMT2) through interacting
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with DECREASE IN DNA METHYLATION1 (DDM1) in
histone H1-containing heterochromatic regions [83]. In
addition to its establishment and maintenance, DNA
methylation can be actively removed by a family of bifunc-
tional methyl-cytosine glycosylases-apurinic/apyrimidinic
lyases through a base excision repair pathway [71]. These
demethylases consist of REPRESSOR OF SILENCING 1
(ROS1) [84], DEMETER (DME) [85, 86], and DEMETER-
LIKE 2 and 3 (DML2 and DML3) [87, 88]. DNA methyla-
tion may change gene expression, inducing imprinting
and activation of transposable elements (TEs) and
TE-associated genes, in response to developmental and
environmental cues [71].
In addition to DNA methylation, the accessibility of

chromatin is dynamically regulated by a suite of histone
modifications, dubbed “histone code” [66]. Core histones
(H2A, H2B, H3, and H4) can be covalently modified at
different positions of amino-terminal tails by different
modifications, including acetylation, methylation, ubiqui-
tination, phosphorylation, glycosylation, carbonylation,
ADP ribosylation, sumoylation, and biotinylation [66, 89,
90]. These modifications, alone or in combination, can
change the accessibility of chromatin structures in the
vicinity of genes to transcription machinery, leading to
transcriptional activities and epigenetic phenomena [91].
Histone acetylation and deacetylation are reversible and
controlled by histone acetyltransferases (HATs) as
“writer” and histone deacetylases (HDACs) as “eraser”
[89, 91, 92]. Most acetylation marks such as histone 3 ly-
sine 9 acetylation (H3K9ac), histone 3 lysine 14 acetyl-
ation (H3K14ac), and histone 3 lysine 36 acetylation
(H3K36ac) are associated with gene activation [89].
Plants have multiple gene families of HATs and HDACs
[89, 93]. Plant HATs are grouped into two based on
localization (nuclei or cytoplasm) [89] or five depending on
sequence features [93]. The major class of HATs is the ho-
mologs of the GCN5 family in yeast and Tetrahymena [94].
Mutation of an Arabidopsis AtGCN5 results in the reduc-
tion of histone H3 or H4 acetylation in the light-responsive
promoter regions and reduced expression of the
light-inducible genes [95]. Moreover, AtGCN5 interacts
with CBF1 and mediates cold-inducible gene expression
[96], which is regulated by the circadian clock [97].
Plants have homologs of histone deacetylases, including

RPD3 (reduced potassium dependency protein3)-like and
sir2-like (silent information regulator protein 2), which
are conserved across all eukaryotes [89, 91]. In addition,
plants have a specific histone deacetylase, HD2, which is
identified in maize [98] and involved in gene repression
and seed development in Arabidopsis [99]. RPD3-like
HDACs, HDA19 or HD1, in Arabidopsis exhibit histone
deacetylase activity [100] and are a general transcriptional
regulator [101]. In the athd1 mutant, approximately 7% of
the genes are either up- or downregulated, while the

upregulated genes are associated with elevated acetylation
levels in a locus-specific manner [102]. HDA6, a homolog
of HDA19, affects CG and CHG methylation and is in-
volved in silencing of TEs and uniparental rRNA genes
subjected to nucleolar dominance [91]. Yeast Sir2 is an
NAD-dependent histone deacetylase and plays a role in
transcriptional silencing and delayed aging [103]. Mem-
bers of the SIRT family are associated with host–pathogen
interactions in Arabidopsis [104], and DNA fragmentation
and cell death in rice through changes in H3K9ac [105].
Like histone acetylation, histone methylation is revers-

ible; but unlike histone acetylation, histone methylation
can be associated with gene activation or repression de-
pending on the site of modifications [90]. In general, his-
tone H3 lysine 4 (H3K4) and H3K36 methylation is
related to gene expression, while H3K9 and H3K27
methylation is related to gene repression and hetero-
chromatin formation [65]. Histone methyltransferases
(HMTs), as writers, are a group of proteins that contain
SET (SU(VAR)/E(Z)TRX) domains to methylate histone
H3 lysine residues. Plant SET domain proteins can be
divided into four groups based on Drosophila members
E(Z), TRX, AHS1, and SU(VAR)3-9 [106]. Some SET do-
main proteins belong to the members of Polycomb
group (PcG) and regulate imprinting and gene expres-
sion during plant and animal development [107], while
others are related to transcriptional activation and silen-
cing [90, 91]. HMTs can have specificity for methylating
lysine residues of histone H3. For example, SUVH4 (aka
KRYPTONITE) is related to histone 3 lysine 9 mono/
dimethylation (H3K9me1/2), Arabidopsis TRITHORX5
and 6 (ATX5 and ATX6) are associated with H3K27
methylation, and ASH 1 Homolog2 (ASHH2) mediates
H3K36me2/3 methylation. SET Domain Group2 (SDG2)
is a major writer for H3K4me1/2/3 and regulates plant
growth and development [108], while ATX1 (SDG27)
and ATX2 (SDG30) display locus-specific H3K42/3
methylation [109].
Histone demethylases or eraser proteins belong to two

groups with distinct biochemical properties. Lysine-spe-
cific demethylase1 (LSD1) acts through amine oxidation,
while a large family of Jumonji C (JmjC)
domain-containing proteins directly reverse histone
methylation by an oxidative demethylation process
[110]. Arabidopsis has four LSD members and 21 JmjC
homologs [111]; they play important roles in plant
growth and development. JMJ5 (ELF6) and JMJ12 (rela-
tive early flowering6 (REF6)) promote early and late
flowering phenotypes in their respective mutants [112].
Increase in Bonsai Methylation1 (IBM1) is a JmjC mem-
ber (JMJ25) which counteracts H3K9 methylation, in
addition to CHG DNA methylation, to prevent spread-
ing of silencing from TEs and heterochromatin to active
genes [113].
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The interplay between histone acetylation, deacetylation,
methylation, and demethylation is dynamic and interactive.
For example, AtGCN5 and AtHDA19 are required for
H3K36ac homeostasis. H3K36ac and histone 3 lysine 36
trimethylation (H3K36me3) show negative crosstalk, which
is mediated by GCN5 and the histone methyl transferase
SDG8 [114]. SUVH4 is a HMT for H3K9 methylation and
interacts with CHROMOMETHYLASE 3 to maintain
CHG DNA methylation at silenced loci [115]. When H3K9
and H3K27 methylation levels are high, these sites are void
of acetylation. Silenced rDNA loci are de-repressed by
5-aza-2′-deoxycytidine (aza-dC), a chemical inhibitor for
DNA methylation, and trichostatin A, a chemical inhibitor
for histone deacetylation, suggesting interactive roles of
DNA methylation and histone deacetylation in gene re-
pression [116]. Moreover, other modifications of histones,
such as phosphorylation and ubiquitination, may also con-
tribute to cell cycle regulation and gene expression during
plant development. Inhibition of histone deacetylation by
trichostatin A in Nicotiana sylvestris protoplasts reduces
H3S10ph at anaphase and telophase and induces the accu-
mulation of metaphase cells [117].
Chromatin modification can also occur at levels of nu-

cleosome remodeling and replacement of core histone with
histone variants [91, 118]. DECREASE IN DNA METHY-
LATION1 (DDM1), encoding a SWI2/SNF2-like chromatin
remodeling protein in plants, mediates DNA methylation
and genome stability [119]. In Arabidopsis, histone variant
H2A.Z is antagonistic with DNA methylation [120] and me-
diates thermosensory responses [121]; H2A.W marks the
heterochromatin with H3K9 methylation [122]. Moreover,
the three-dimensional structure in nuclei can also impact
chromatin dynamics and spatial-temporal transcriptional
regulation in animals [123] and possibly in plants.
Dynamic regulation of DNA methylation and chroma-

tin modifications have been recognized to be essential
for transcriptional regulation in response to growth and
development in plants and animals [124]. The chromatin
landscape is interwoven with circadian control of tran-
scriptional regulatory networks with the corresponding
spatial and temporal information [123].

The interplay between chromatin remodeling and
the Arabidopsis circadian clock
The first report describing a connection between chro-
matin remodeling and the Arabidopsis circadian clock
uncovered a remarkable parallelism between the rhyth-
mic changes in mRNA and the oscillatory pattern of his-
tone 3 acetylation (histone 3 lysine 9 and 14 acetylation,
H3K9/14ac) at the promoter of the clock gene TOC1
[125]. The study also showed that repression of TOC1 at
dawn coincided with the binding of CCA1 to the TOC1
promoter and with a hypo-acetylated state of H3. During
the day, the TOC1 mRNA rising phase correlates with

increased H3ac that likely favors an open chromatin
conformation, facilitating the accessibility of the tran-
scriptional machinery and, hence, the transcription of
the gene. Later studies showed that, during the day, the
clock-related MYB transcription factor RVE8 contributes
to the hyper-acetylated state of H3 at the TOC1 pro-
moter, antagonizing CCA1’s repressive function. The
molecular mechanism by which RVE8 facilitates the in-
creased H3ac was later identified [48] (see below). At
the peak of TOC1 expression, histone deacetylase activ-
ities contribute to the removal of acetyl groups from H3,
leading to a hypo-acetylated state that correlates with
the declining phase of TOC1 mRNA [125]. In addition,
CHE, another clock component, is repressed at ZT6 and
ZT9 in the AtHD1 mutant [126]. Further studies showed
that CHE interacts with AtHD1 to repress CCA1 expres-
sion; CCA1 repression was relieved in the che athd1
double mutant. The interaction of clock–chromatin pro-
teins would add another layer of complexity in the circa-
dian transcriptional feedback loop.
Other histone marks also associate with the chromatin

state at the TOC1 promoter [127–129]. For instance,
histone 3 lysine 4 trimethylation (H3K4me3) accumula-
tion is also rhythmic and peaks just after the peak of
H3ac. The rhythms were observed under different pho-
toperiods and under constant light conditions, suggest-
ing a direct link with the circadian clock [127–129].
Accumulation of H3K4me3 antagonizes the binding of
clock repressors such as CCA1, thus preventing repres-
sion from occurring too early and ensuring a precise
24-h rhythmic expression [129]. The histone methyl-
transferase SDG2/ATXR3 (SET DOMAIN GROUP 2/
ARABIDOPSIS TRITHORAX RELATED 3) was pro-
posed to contribute to the H3K4me3 accumulation as
clock gene expression, H3K4me3 marks, and clock re-
pressor binding were affected in plants miss-expressing
SDG2/ATXR3 [129]. The oscillatory accumulation of
these histone marks paralleling the rhythmic mRNA ac-
cumulation is not exclusive for TOC1 but is also present
at the promoters of other oscillator genes such as CCA1,
LHY, PRR9, PRR7, and LUX [129]. It was proposed that
these histone marks could provide the rhythmic activa-
tion necessary for expression, particularly in a circadian
signaling network full of repressors [130] (Fig. 1). A
recent report has further explored the connection be-
tween the clock and chromatin dynamics identifying a
H3K9ac/H3K27ac/H3S28ph signature as a mechanism
controlling diurnal transcript changes [131]. Baerenfaller
et al. [131] proposed that H3K4me3 marks and the ab-
sence of the repressive H3K9me2 and histone 3 lysine
27 trimethylation (H3K27me3) might be responsible for
the control of the steady active states.
Another chromatin-activating function relies on HUB1

(HISTONE MONOUBIQUITINATION1), an unusual
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ubiquitin E3 ligase that is involved in histone H2B ubi-
quitination (H2Bub) [132]. Studies with hub1-1 mutant
plants showed a reduced amplitude in the expression of
clock genes as well as in histone H2Bub and H3K4me3
marks associated with the gene coding regions [133].
These results together with the fact that H2Bub facili-
tates the function of the FACT (facilitates chromatin
transcription) complex in humans [134] suggest a role
for HUB1 on transcriptional elongation in plants [135].
It is noteworthy that the direct connection of the circa-
dian clock with the FACT complex was previously
hinted at [125] and later mechanistically confirmed [48].
Indeed, rhythms in transcript initiation and elongation
of evening-expressed clock genes rely on the rhythmic
recruitment of RNA polymerase II and the FACT com-
plex to their promoters. The mechanism depends on the
interaction of the clock-related components LNKs with
RNA polymerase II and the FACT complex. In turn, the
interaction of LNKs with RVE8, which is able to bind to
the target promoters, allows the recruitment of the tran-
scriptional machinery and associated chromatin remod-
eling complexes to rhythmically co-occupy the clock

gene promoters [48]. This mechanism exemplifies an ef-
fective way for controlling chromatin status, transcript
initiation and elongation, and proper rhythms in nascent
RNAs [48]. These findings are consistent with a recent
study showing that the expression of a subset of clock
genes is downregulated in elo mutant plants [136]. These
mutants are deficient in the elongator complex, which
promotes RNA polymerase II-mediated transcript elong-
ation through epigenetic activities such as histone acetyl-
ation [136] (Fig. 2).
Not just activating histone modifications are associated

with the clock as other histone marks such as histone 3
lysine 36 dimethylation (H3K36me2) appear to nega-
tively correlate with the expression of the oscillator
genes [128]. Furthermore, the transcriptional repression
of CCA1 and LHY is regulated by members of the Grou-
cho/Tup1 protein family, topless/topless-related (TPL/
TPR), which interact with the PRR protein family at the
CCA1 and LHY promoters [137]. This repression is alle-
viated following treatment with the histone deacetylase
inhibitor trichostatin A, suggesting that the histone dea-
cetylase activity is required for TPL function. Also,
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PRR9, TPL, and HDA6 (histone deacetylase 6) form a
protein complex likely involved in H3 deacetylation
[137]. Therefore, TPL functions as an important
chromatin-related repressor of core oscillator genes.
The clock seems in turn to feedback on chromatin

regulation as the expression of a number of chromatin
remodeling factors rhythmically oscillates [138]. Tran-
scriptional regulation by the clock might be a way to
temporally control the expression of the oscillator genes
or other clock input or output genes. For instance,
CCA1 directly binds to the promoter of PKL (PICKLE)
[139]. The gene encodes an ATP-dependent chromatin
remodeling factor that negatively regulates photo-
morphogenesis. Zha et al. [139] show that CCA1 regula-
tion of PKL could be important for hypocotyl elongation
under warm temperatures. It is interesting to note that
the expression of PKL is downregulated in cca1 mutant
plants [139], which suggests that CCA1 activates PKL
transcription. This activating function is in clear contrast
with the CCA1 repressive role of core clock genes.
CCA1 also regulates the expression of HAF2 (HISTONE
ACETYLTRANSFERASE OF THE TAFII250 FAMILY 2).
HAF2 seems to promote H3ac at the PRR5 and LUX
promoters to activate their expression [140].
Two reports also showed a connection of JMJD5/JMJ30,

a putative histone demethylase Jumonji C (JmjC) protein,
with the plant circadian clock [141, 142]. JMJD5/JMJ30
has a peak of expression in the evening, a pattern of ex-
pression that is regulated by direct binding of CCA1 and
LHY to the JMJD5/JMJ30 promoter to repress its expres-
sion [141]. JMJD5/JMJ30 in turn promotes CCA1 and
LHY expression and consequently jmjd5/jmj30 mutant
plants display a short-period circadian phenotype [141,
142]. However, overexpression of JMJD5/JMJ30 also leads
to short-period circadian phenotypes [141], which raises

the question of the JMJD5/JMJ30 mechanism of action
within the clock. Notably, a short-period phenotype was
also found in jmjd5 mutant mammalian cells, and both
orthologs were able to lengthen circadian period when
expressed in the reciprocal system [142]. These results
suggest a similar function of JMJD5/JMJ30 in plants and
mammals.
The clock component CCA1 has also been associated

with other chromatin-related factors. For instance,
MUT9P-like-kinase 4 (MLK4), a kinase that phosphory-
lates histone H2A at S95, directly interacts with CCA1
and this interaction permits MLK4 to bind to the pro-
moter of the clock- and flowering-related gene GIGAN-
TEA (GI) [143]. CCA1 also interacts with a subunit of
the Swi2/Snf2-related ATPase (SWR1) and NuA4 com-
plexes [143]. These complexes participate in the depos-
ition of the histone variant H2A.Z and histone H4
acetylase activities, respectively. Mutation of MLK4
results in decreased GI expression, which correlates with
reduced histone 2A serine 95 phosphorylation
(H2AS95Ph), H2A.Z, and histone 4 acetylation (H4Ac)
at the GI locus. The regulation seems to be important
for flowering as mlk4 mutant plants flower late [143].
Notably, ELF3 also co-immunoprecipitates with MLK1–
4 [144] and analyses of mlk1–4 loss-of-function mutants
showed an alteration of circadian period [144]. It would
be interesting to fully uncover the relevance of MLK1–4
interaction with ELF3. CCA1 and LHY also interact with
the LSD1-like histone demethylases LDL1 and LDL2 to
repress TOC1 and likely other CCA1 gene targets [145].
LDL1 and LDL2 also interact with the histone deacety-
lase HDA6 so that they coordinately control histone de-
methylation and deacetylation at the TOC1 locus [145].
Thus, HDA6 not only interacts with PRR9 and TPL but
also with CCA1 and LHY. Yeast two-hybrid assays have
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shown that CCA1 also interacts with the deacetylase
SIRT1 (SIRTUIN1) [138]. These results are interesting
as mammalian SIRT1 interacts with the core clock com-
ponent CLOCK to regulate its chromatin-related func-
tion [146]. However, further experiments are necessary
to fully confirm the CCA1–SIRT1 interaction in plants
and to demonstrate the biological relevance of such an
interaction.

Chromatin and clock interplay in
Arabidopsis hybrids and other crops
Circadian regulation is highly conserved among flowering
plants, and the function of central clock genes in Arabi-
dopsis can be complemented by homologous genes in rice
and maize [147, 148]. Changes in plant growth and devel-
opment in response to adaptation and selection could
have an epigenetic basis [149]. Natural variation of circa-
dian clock features contributes to plant fitness over a wide
geological spectrum [150], although the genetic and/or
epigenetic basis for altered clock parameters is unclear. In
addition to their sessile nature, plants have plasticity in
their genomes that can be reprogrammed through
hybridization and polyploidy, providing a pervasive force
in the evolution of eukaryotic genomes [151, 152]. In Ara-
bidopsis suecica, a naturally formed allotetraploid and its
resynthesized siblings, expression waveforms (or ampli-
tudes) of circadian clock genes (e.g., CCA1, LHY, TOC1,
and GI) are altered because of histone acetylation and
methylation changes presumably resulting from interge-
nomic interactions between the hybridizing parents [153].
As a result, the circadian-mediated output regulatory
pathways, including photosynthesis and starch metabol-
ism, stress responses, and phytohormonal production, are
rewired in response to the clock change [154]. The more
starch is produced during the day [153], the more can be
degraded and utilized at night [155] to promote plant
growth. However, it is unclear whether epigenetic modifi-
cation of circadian clock genes is a result of interspecific
hybridization or the cause of the altered circadian regula-
tory networks. It is also notable that expression waveforms
(or amplitudes) of the circadian clock genes are changed,
while the diurnal or circadian period is maintained in
these examples to sustain growth vigor.
In an ever-changing environment, plant growth is also

influenced by other factors including defense to biotic
and abiotic stresses. This trade-off balance is mediated
through the internal circadian clock that regulates ex-
pression of biotic and abiotic stress-responsive genes
[156]. Under normal growth conditions, parents have a
memory to elevate expression of stress-response genes,
which is inherited from their adaptation to local envi-
ronments [97, 157]. This stress-response memory is
erased and reprogrammed in Arabidopsis thaliana hy-
brids by expression changes in the circadian clock genes

through epigenetic mechanisms to save the energy from
defense to promote growth [97]. Under stress condi-
tions, however, expression of stress-responsive genes
from both parents is inducible at certain times and in
certain stress environments, depending on the type of
biotic or abiotic stress, for defense, which could have
minimized the energy cost, compared with constitutive
expression of stress-responsive genes in their parents, of
defense for growth [97]. When the stress-responsive genes
cannot be epigenetically suppressed in the hybrids, they suf-
fer from hybrid vigor to cause hybrid weakness [158].
Moreover, the circadian clock regulates expression of many
other genes involved in biosynthesis and signaling of phyto-
hormones, including auxin and ethylene [159, 160]. Diurnal
downregulation of ethylene biosynthesis genes in hybrid
plants could also lead to growth vigor; however, the regula-
tion of ethylene biosynthetic genes by CCA1 is indirect
[161], suggesting involvement of other factors such as
epigenetic ones and other clock components.
There is evidence that expression of circadian clock

genes is affected by DNA methylation through the
RdDM pathway [162]. In the RdDM gene mutants ago4
and nrpd1, CHH methylation levels in the CCA1 pro-
moter region are reduced, while the CCA1 expression
waveform is increased. This change in DNA methylation
is associated with the parent-of-origin effect on CCA1
expression in the hybrids, as if CCA1 expression is
imprinted by the RdDM pathway, which is consistent
with maternal expression of NRPD1 in Arabidopsis
[163]. However, we do not know how DNA methylation
controls CCA1 expression or overall circadian rhythms.
CCA1 expression is not altered in the maintenance
methylation mutant met1 or ddm1 [162]. Methylome
analysis in 3-h time intervals does not seem to support
an overall diurnal rhythm of DNA methylation in A.
thaliana (unpublished data).
Cotton fiber development is influenced by seasonal

changes, probably because of temporal regulation in dif-
ferent growth conditions during the winter and summer
[164]. This change is coincident with CHH methylation
changes in the promoters of some fiber-related genes,
which is confirmed by reducing ROS1 expression in the
transgenic cotton, promoting fiber growth in the sum-
mer. The role of DNA methylation in seasonal variation
hints at a connection with the circadian clock, but it is
unclear if the methylation variation affects expression of
circadian clock genes in cotton.
Flowering time in plants is controlled by the photo-

period pathway that involves CONSTANS (CO) and flow-
ering locus T (FT), which are regulated by the circadian
clock and light signaling pathways [165]. In Arabidopsis,
overexpressing CCA1 delays flowering [27], while the cca1
mutant has an early flowering phenotype [166]. In sor-
ghum, pseudoresponse regulator 37 (PRR37) activates CO
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and represses FT in the long-day condition, causing late
flowering, and consequently, the mutant prr37 has an
early flowering phenotype [167]. Similarly, PRR and GI
homologs are associated with flowering time quantitative
trait loci in rice, maize, and other crops (reviewed in
[168]). Although epigenetic regulation of vernalization
and flowering time has been extensively investigated
[169], little is known about the epigenetic link with circa-
dian regulation in control of flowering time. A recent
study demonstrated that some key regulators controlling
photoperiodic flowering, such as CO or CO-Like (COL)
genes, are among the epialleles that are generated during
allotetraploid cotton evolution [170]. GhCOL2 is methyl-
ated and silenced in the wild relatives and hypo-methyl-
ated and expressed in the cultivated cotton. Reducing
COL2 expression in the cultivated cotton delays flowering.
The result suggests a role for epialleles in the
circadian-mediated pathway that regulates flowering time
and shapes crop domestication.

Future directions
The studies summarized in this review clearly establish
that the plant circadian clock is directly connected with
chromatin modifications. Despite the wealth of informa-
tion on the interactive interplay between chromatin
components and circadian regulators, we are still far
from a complete understanding of the molecular and
cellular basis underlying this connection. Many ques-
tions remain to be answered. For instance, how do envir-
onmental cues trigger the clock–chromatin interactions,
spontaneously or in a sequential manner? The diurnal
fluctuations in light and temperature correlate well with
oscillatory patterns of histone modifications at clock loci.
However, it is not fully known whether the clock
gates specific chromatin signatures in response to fluctu-
ating environmental stresses. Similarly, does the
stress-dependent transcriptional activation or repression
of clock genes depend on gated chromatin changes? Is it
possible that the gated chromatin signatures provide a
memory of recent transcriptional activity? Addressing
these questions is pertinent in the context of climate
change and global warming, which impose a real threat
to agricultural productivity. Based on the role of the cir-
cadian clock in plant responses to stresses, a full under-
standing of the environmental factors coordinating the
chromatin and transcriptional landscapes would be crit-
ical to improve plant fitness and productivity.
The intricate connection between the circadian oscilla-

tions and chromatin modifications also opens a key un-
resolved question about which one is the “cause” and
which one is the “consequence”. It is known that circa-
dian clock components and chromatin regulators form
functional protein complexes that correlate with changes
in circadian gene expression, DNA methylation, and

chromatin modifications. However, it remains to be de-
fined whether circadian clock components recruit the
epigenetic factors to genomic targets for circadian out-
put or the epigenetic modifications facilitate the recruit-
ment of clock and other factors for circadian regulation.
Answering this question is not trivial but it will provide
key information about how the epigenetic and circadian
transcriptional landscapes are temporally coordinated. In
addition, spatial coordination of circadian and chromatin
regulation is important to plant growth and develop-
ment. Research is rapidly and significantly advancing our
understanding of how the clock works in different cells
and tissues and within the whole plant. The cell and tis-
sue specificity of the circadian transcriptional landscapes
might very well be correlated with similar spatial speci-
ficities of chromatin remodeling. It is possible that spe-
cific chromatin components and marks connected with
clock loci only function at particular cells or tissues de-
pending on the specificities of clock outputs on those
cells and tissues.
Another interesting aspect that remains to be fully ex-

plored is the evolutionary trajectory of clock and chro-
matin remodeling. From the initial studies in the model
system A. thaliana, research is increasingly advancing in
analyses of clock and chromatin function in other
non-model plants. The use of multidisciplinary ap-
proaches, including chronobiology, chromatin biology,
mathematical modeling, and molecular evolution, will
help us to define the similarities and differences across
the plant kingdom over evolution. These studies will also
provide information on how the circadian clock function
is able to regulate the physiological and developmental
diversity of different plants such as monocots and eudi-
cots. Lastly, the development of new tools and integra-
tive methods, including but not limited to chromatin
and transcriptomics profiles at the single-cell level, will
further uncover the intrinsic complexity of chromatin
and circadian regulatory networks at both cellular and
organismal levels.
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