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Abstract

Measurements of single-cell methylation are revolutionizing our understanding of epigenetic control of gene
expression, yet the intrinsic data sparsity limits the scope for quantitative analysis of such data. Here, we introduce
Melissa (MEthyLation Inference for Single cell Analysis), a Bayesian hierarchical method to cluster cells based on local
methylation patterns, discovering patterns of epigenetic variability between cells. The clustering also acts as an
effective regularization for data imputation on unassayed CpG sites, enabling transfer of information between
individual cells. We show both on simulated and real data sets that Melissa provides accurate and biologically
meaningful clusterings and state-of-the-art imputation performance.

Background
DNA methylation is probably the best studied epige-
nomic mark, due to its well-established heritability and
widespread association with diseases and a broad range
of biological processes, including X-chromosome inacti-
vation, cell differentiation, and cancer progression [1–3].
Yet its role in gene regulation, and the molecular mech-
anisms underpinning its association with diseases, is still
imperfectly understood.
Bisulfite treatment of DNA followed by sequencing (BS-

seq) has provided a powerful tool for measuring the
methylation level of cytosines on a genome-wide scale
with single nucleotide resolution [4]. BS-seq protocols
have been vastly improved over the last decade, with
BS-seq rapidly becoming a widespread tool in biomedi-
cal investigation. Nevertheless, until very recently, BS-seq
could only be used to measure methylation in bulk pop-
ulations of cells [5], preventing effective investigations of
the role of DNA methylation in shaping transcriptional
variability and early development [6, 7].
This shortcoming has been addressed within the last

5 years through the development of protocols to measure
DNA methylation at single-cell resolution using either
scBS-seq [8] or scRRBS [9] making it possible to uncover
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the heterogeneity and dynamics of DNAmethylation [10].
Even more recently, methods have been developed that
can sequence both the methylome and the transcriptome
or other features in parallel, potentially enabling a quan-
tification of the role of DNA methylation in explaining
transcriptional heterogeneity [11–13]. However, due to
the small amounts of genomic DNA per cell, these pro-
tocols usually result in very sparse genome-wide CpG
coverage (i.e., for most CpGs, we have missing values),
ranging from 5% in high-throughput studies [14, 15] to
20% in low-throughput ones [8, 11]. The sparsity of the
data represents a major hurdle to effectively use single-
cell methylation assays to inform our understanding of
epigenetic control of transcriptomic variability, or to dis-
tinguish individual cells based on their epigenomic state.
In this paper, we address these problems by using a

two-pronged strategy. First, we note that several recent
studies have highlighted the importance of local methyla-
tion profiles, as opposed to individual CpG methylation,
in determining the epigenetic state of a region [16–18].
This implies that local spatial correlations may be effec-
tively leveraged to ameliorate the issue of data sparsity.
Secondly, single-cell BS-seq protocols, as all single-cell
high-throughput protocols, simultaneously assay a large
number of cells, ranging from several tens [8] to a few
thousands in the most recent studies [14]. Such abun-
dance of data could be exploited to our advantage to
transfer information across similar cells.
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We implement both of these strategies within Melissa
(MEthyLation Inference for Single cell Analysis), a
Bayesian hierarchical model that jointly learns the methy-
lation profiles of genomic regions of interest and clusters
cells based on their genome-wide methylation patterns.
In this way, Melissa can effectively use both the informa-
tion of neighboring CpGs and of other cells with similar
methylation patterns in order to predict CpG methyla-
tion states. As an additional benefit, Melissa also provides
a Bayesian clustering approach capable of identifying
subsets of cells based solely on epigenetic state, to our
knowledge the first clustering method tailored specifi-
cally to this rapidly expanding technology. We benchmark
Melissa on both simulated and real single-cell BS-seq data,
demonstrating that Melissa provides both state-of-the art
imputation performance and accurate clustering of cells.
Furthermore, thanks to a fast variational Bayes estimation
strategy, Melissa has good scalability and can provide an
effective modeling tool for the increasingly large single-
cell methylation studies which will become prevalent in
coming years.

Results and discussion
Melissa addresses the data sparsity issue by leveraging
local correlations between neighboring CpGs and simi-
larity between individual cells (see Fig. 1). The starting
point is the definition of a set of genomic regions (e.g.

genes or enhancers) over which the model will be applied.
Within each region, Melissa postulates a latent profile of
methylation, a function mapping each CpG within the
region to a number in [ 0, 1] which defines the proba-
bility of that CpG being methylated. To ensure spatial
smoothness of the profile, Melissa uses a generalized lin-
ear model (GLM) of basis function regression along the
lines of [16] (with modified likelihood to account for
single cell data). Local correlations are however often
insufficient for regions with extremely sparse coverage,
and these are quite common in scBS-seq data. Therefore,
we share information across different cells by coupling
the local GLM regressions through a shared prior dis-
tribution. In order to respect the (generally unknown)
population structure that may be present within the cells
assayed, we choose a (finite) Dirichlet mixture model
prior. The output of Melissa is therefore twofold: at each
genomic region in each cell, we get a predicted pro-
file of methylation, which can be used to impute miss-
ing data (i.e., unassayed CpGs). For each cell, we also
get a discrete cluster membership probability, provid-
ing a methylome-based clustering of cells. This twofold
output of Melissa reflects its methodological founda-
tions as a hybrid between a global unsupervised model
(Bayesian clustering of methylomes) and a local super-
vised learning model (GLM regression for every region).
In this sense, Melissa is closer to a mixture of experts

Fig. 1Melissa model overview. Melissa combines a likelihood computed from single-cell methylation profiles fitted to each genomic region using a
supervised regression approach (bottom left) and an unsupervised Bayesian clustering prior (top left). The posterior distribution provides a
methylome-based clustering (top right) and imputation (bottom right) of single cells
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model [19, Chapter 14, Section 5] than a standard mixture
model.

Benchmarking Melissa on simulated data
We benchmark the ability of our model to cluster and
impute CpGmethylation states at the single-cell level both
on simulated and mouse embryonic stem cell (ESC) data
sets. To assess test prediction performance, we consider
different metrics, including F-measure, the area under the
receiver operating characteristic curve (AUC), and preci-
sion recall curves [20]. We explore the performance of a
number of methods as we vary three possible experimen-
tal parameters: the number of cells assayed, the cluster
dissimilarity (how different the methylomes of cells in dif-
ferent clusters are expected to be), and the CpG coverage
(defined as the fraction of CpG sites covered by at least
one read, averaged over all cells).
To benchmark the performance of Melissa in predicting

CpG methylation states, we compare it against six dif-
ferent imputation strategies. As a baseline approach, we
compute the average methylation rate separately for each
cell and region (Rate), that is, the average is taken over
all CpG sites forming a genomic region. We also use the
BPRMeth model [16, 21], where we account for the binary
nature of the observations, which we train independently
across cells and regions (BPRMeth). Note that BPRMeth
shares information across CpG sites inside each genomic
region; however, it does not transfer information across
cells. To share information across cells, but not across
neighboring CpGs inside the region, we constrain Melissa
to infer constant functions, i.e., learn average methyla-
tion rate (Melissa rate). We also use a Gaussian mixture
model (GMM) that takes as input average M values [22]
instead of average methylation rates across the region
(see the “Methods” section); to avoid possible problems
due to high-dimensionality, the GMM method was also
tested on reduced-dimensionality data, where the first ten
principal components were retained. Additionally, as a
fully independent baseline, we use a Random Forest clas-
sifier trained on individual cells and regions, where the
input features are the observed CpG locations, and the
response variable is the CpG methylation state: methy-
lated or unmethylated (RF). This is essentially the method
of [23], however, without using additional annotation data
or DNA sequence patterns. We delay comparisons with
the deep learning method DeepCpG [24] to the next
section, as DeepCpG is not applicable in the settings of
this simulation (see below).
In order to generate realistic simulated single-cell DNA

methylation data, we extracted methylation profiles from
real (bulk) BS-seq data using the BPRMeth package [21],
and then generated binary methylation levels at a random
subset of CpGs to simulate the low coverage of scBS-
seq. In total, we simulated N = 200 cells from K = 4

sub-populations, where each cell consisted of M = 100
genomic regions. Additionally, to account for different
levels of similarity between cell sub-populations, we sim-
ulated 11 different data sets by varying the proportion
of similar genomic regions between clusters. Finally, to
assess the performance of Melissa as a function of assayed
single cells, we simulated 10 different data sets by vary-
ing N, the total number of single cells (see the “Methods”
section).
Applying the competing methods to synthetic data, we

observe that Melissa yields a substantial improvement in
prediction accuracy compared to all other models (Fig. 2,
Additional file 1: Figure S1 and S2). Notably, Melissa is
robust across different settings of the data, such as CpG
coverage proportion (Fig. 2a) or the total number of cells
assayed in each experiment (Fig. 2b). Due to its ability to
transfer information across cells and neighboring CpGs,
our model robustly maintains its prediction accuracy at a
very sparse coverage level of 10% or even when assaying
around 25 single cells. The BPRMeth and RF models per-
form poorly at low CpG coverage settings, becoming com-
parable to Melissa when using the majority of the CpGs
for training set. Importantly, Melissa still performs better
at 90% CpG coverage, demonstrating that the clustering
acts as an effective regularization for imputing unassayed
CpG sites. As expected, Melissa Rate and GMM have
very similar performance (due to the very similar model
structure); for both methods, performance is significantly
weaker than Melissa across the full range of simulation
settings, since they are not expressive enough to cap-
ture spatial correlations between CpGs. Using GMM on
reduced dimensionality data did not lead to an improve-
ment in performance, either for imputation or clustering
(data not shown). Finally, the naive Rate method has
the worst imputation performance of all methods, by a
considerable margin. The imputation performance of all
methods is relatively insensitive to the degree of cluster
dissimilarity (Additional file 1: Figure S2).
Next, we consider the clustering performance of

Melissa. Since most of the rival methods do not have a
notion of clustering, we compare Melissa to clustering
using methylation rates for binary data (Melissa Rate) or
Gaussian data (GMM) using M values [22]. As a perfor-
mance metric, we use the Adjusted Rand Index (ARI) [25]
between the true cluster assignment and the predicted
cluster membership returned from the model. Figure 3a
shows ARI values comparing the three models for varying
CpG coverage (with cluster dissimilarity level at 0.5 and
N = 200 cells). Melissa performs perfectly in all settings,
demonstrating its power and sensitivity in identifying
robustly the cell sub-population structure. When varying
the level of cluster dissimilarity (see Fig. 3b), the model
is still able to retain its high clustering performance. As
expected, for settings with low variability between clusters
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Fig. 2Melissa robustly imputes CpG methylation states. a Imputation performance in terms of AUC as we vary the proportion of covered CpGs used
for training. Higher values correspond to better imputation performance. For each CpG coverage setting, a total of 10 random splits of the data to
training and test sets was performed. Each colored circle corresponds to a different simulation. The plot shows also the LOESS curve for each
method as we increase CpG coverage. The methods considered wereMelissa which shares information across cells and neighboring CpGs, the
BPRMethmodel that only shares information across neighboring CpGs, and a Random Forest classifier (RF) which predicts CpG methylation states
using as input the observed CpG locations. Additionally, we considered three baseline models: Melissa Rate that transfers information across cells
but not across neighboring CpGs using mean methylation levels across the genomic region, a Gaussian mixture model (GMM) that takes as input
averageM values across the region, and finally, the Ratemethod where we compute a mean methylation rate separately for each cell and genomic
region. b Imputation performance measured by AUC for varying number of cells assayed. In a, N = 200 cells were simulated and cluster dissimilarity
was set to 0.5, and in b, CpG coverage was set to 0.4 and cluster dissimilarity to 0.5

(i.e., cell sub-populations are difficult to distinguish), the
performance drops; however, Melissa is consistently supe-
rior to the Melissa Rate and GMM models and rapidly
reaches near-perfect clustering accuracy. Similarly, when
varying the total number of cells assayed in each exper-
iment (see Fig. 3c), Melissa retains its almost perfect
clustering performance and is still consistently superior
than the competing models.
Subsequently, we test Melissa’s ability to perform model

selection, that is, to identify the appropriate number of
cell sub-populations. To do so, we run the model on sim-
ulated data, setting the initial number of clusters to K =
10 and letting the variational optimization prune away
inactive clusters [26]. We used both broad (red line) and
shrinkage (blue line) priors. Figure 3d shows that the vari-
ational optimization automatically recovered the correct
number of mixture components for almost all parame-
ter settings. As expected, in settings with high between
cluster similarity, the model with shrinkage prior returned
fewer clusters, since the data complexity term in Eq. (9)
(see the “Methods” section) was penalizing more the vari-
ational approximation compared to the gain in likelihood
from explaining the data. Finally, we assess the scalabil-
ity of Melissa with respect to the number of single cells.
Additional file 1: Figure S3 compares the variational Bayes
(red line) with the Gibbs sampling (blue line) algorithm,
which demonstrates the good scalability of variational
inference where we can analyze thousands of single cells
in acceptable running times. The maximum number of

iterations for the variational Bayes algorithm was set to
400, and the Gibbs algorithm was run for 3000 iterations.
Both algorithms are implemented in the R programming
language and were run on a machine utilizing at most 16
CPU cores.

Benchmarking Melissa on sub-sampled bulk ENCODE data
The results in the previous section convincingly showed
a substantial advantage of Melissa over competing meth-
ods both in terms of imputation performance and in
terms of clustering. However, conditioned on some seed
profiles learnt from bulk data, the simulation was con-
ducted on data which was directly sampled from the
generative Melissa model (with some additional noise),
which could conceivably introduce an unfair bias in
the comparison. Additionally, since data were simulated
as separate regions, comparison with the deep learning
method DeepCpG [24] was not possible, since DeepCpG
requires the information of a large number of neighbor-
ing CpGs to predict the methylation state of each target
CpG site. To faithfully simulate scBS-seq data, we gen-
erated two additional synthetic data sets by directly sub-
sampling bulk ENCODE reduced representation bisulfite
sequencing (RRBS) and whole-genome bisulfite sequenc-
ing (WGBS) experiments (see the “Methods” section). For
the bulk RRBS data, we randomly sub-sampled 10% of
the mapped reads and generated 40 pseudo-single cells
from the GM12878 and H1-hESC cell lines. Due to the
higher sequencing depth of bulkWGBS experiments, only
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Fig. 3Melissa efficiently and accurately clusters cell sub-populations. a Clustering performance measured by ARI as we vary CpG coverage. Higher
values correspond to better agreement between predicted and true cluster assignments. For each CpG coverage setting, a total of 10 random splits
of the data to training and test sets was performed. Each colored circle corresponds to a different simulation. The plot shows also the LOESS curve
for each method as we increase CpG coverage. b Clustering performance (ARI) for varying proportions of similar genomic regions between clusters.
c Clustering performance (ARI) as we vary the total number of cells assayed. d Predicted number of clusters using two different prior settings: a
broad and a strict prior as we vary cluster dissimilarity. Initial number of clusters was set to K = 10. Melissa identifies the correct number of clusters
in most parameter settings (K = 4); notably when there is no dissimilarity across clusters (i.e., we have one global cell sub-population), Melissa
prunes away all components and keeps only one cluster (K = 1)

0.5% of the mapped reads were sub-sampled to gener-
ate pseudo-single-cell methylomes. Subsequently, reads
falling in the same genomic site were binarised to obtain
a digital output of methylation. Finally, the two cell lines
were combined in a single data set of 80 pseudo-single
cells prior to running Melissa. This procedure produces
data with a more similar structure to real scBS-seq data,
since the uneven read coverage better captures the struc-
ture of missing data observed in single cell epigenomic
experiments.
Table 1 shows the results for the two studies when

imputing CpGs falling in genomic regions of ± 2.5 kb
around transcription start sites (TSS) for different levels of
CpG coverage. Consistently with the simulation study in

the previous section, Melissa performs significantly better
(on scRRBS synethtic data) or comparable (on scWGBS
synthetic data) to competitors at imputation tasks. As
reported in [24], DeepCpG performs very strongly with
comparable accuracy to Melissa across all CpG cover-
age settings (notice that training of DeepCpG is however
slightly different, see “Methods” section). The systemati-
cally lower performance of DeepCpG on the scRRBS data
set is to be expected as DeepCpG relies on information
from neighboring CpGs over a large region, and might
therefore be at disadvantage for data generated using this
technology. The results are consistent across all differ-
ent metrics considered in this paper and when increasing
the window size to ± 5 kb around TSS (see Additional
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Table 1 Melissa robustly imputes CpG methylation states on sub-sampled ENCODE scRRBS and scWGBS synthetic data. Entries with
italics denote the model with the highest performance in terms of AUC

Pseudo scRRBS Pseudo scWGBS

Model AUC 20% cov AUC 50% cov AUC 20% cov AUC 50% cov

Melissa 0.96
(
7.3 × 10−4

)
0.96

(
6.8 × 10−4

)
0.96

(
6.3 × 10−4

)
0.96

(
6.6 × 10−4

)

DeepCpG 0.94
(
1.5 × 10−3

)
0.94

(
1.5 × 10−3

)
0.96

(
1.4 × 10−3

)
0.96

(
1.4 × 10−3

)

BPRMeth 0.88
(
2.2 × 10−3

)
0.91

(
2.5 × 10−3

)
0.90

(
1.9 × 10−3

)
0.92

(
1.5 × 10−3

)

RF 0.79
(
3.2 × 10−3

)
0.87

(
2.0 × 10−3

)
0.83

(
2.2 × 10−3

)
0.89

(
2.1 × 10−3

)

Melissa rate 0.88
(
1.8 × 10−3

)
0.88

(
1.3 × 10−3

)
0.70

(
2.2 × 10−3

)
0.71

(
2.5 × 10−3

)

Rate 0.82
(
2.6 × 10−3

)
0.84

(
2.5 × 10−3

)
0.76

(
4.2 × 10−3

)
0.77

(
3.0 × 10−3

)

Imputation performance in terms of AUC as we vary the proportion of covered CpGs used for training. Higher values correspond to better imputation performance. For each
CpG coverage setting, a total of 10 random splits of the data to training and test sets was performed; shown are the mean AUC value together with two standard deviations
of the estimate in parenthesis. Note that DeepCpG was trained once on two chromosomes; hence, the values do not change as we vary the CpG coverage

file 1: Figure S4–S9). Finally, Melissa could easily separate
both cell sub-populations for all settings considered in this
study.

Melissa accurately predicts methylation states on real data
To assess Melissa’s performance on real scBS-seq data,
we considered two mouse ESC data sets generated from
scM&T-seq [11] and scBS-seq [8] protocols. The mouse
ESCs were cultured either in 2i medium (2i ESCs) or
serum conditions (serum ESCs); hence, we expect methy-
lation heterogeneity between cell sub-populations. In
addition, in serum ESCs, there is evidence of additional
CpG methylation heterogeneity [27], making these data
suitable for the model selection task to infer cell sub-
population structure. The analysis on both data sets was
performed on six different genomic contexts: protein
coding promoters with varying genomic windows: ± 1.5
kb, ± 2.5 kb, and ± 5 kb around TSS, active enhancers,
super enhancers, and Nanog regulatory regions (see the
“Methods” section for details on data preprocessing). It
should be noted that DeepCpG is designed to predict
individual missing CpGs, rather than missing regions,
and requires always information about neighboring CpGs.
This means that, during prediction, DeepCpG always has
access to more data than competing methods, potentially
providing it with an unfair advantage; to partly address
this problem, we also present results when DeepCpG
had access to sub-sampled data (labeled DeepCpG Sub in
our figures). In general, DeepCpG should be thought as
complementary to Melissa, and comparisons should be
evaluated cautiously (see below).
We first applied Melissa on the scM&T-seq data set

which consists of 75 single cells (14 2i ESCs and 61 serum
ESCs). Figure 4a shows a direct comparison of the impu-
tation performance of all the methods across a variety
of genomic contexts. Melissa is better or comparable to
rival methods in terms of AUC (see Fig. 4a) and substan-
tially more accurate in terms of F-measure (Additional

file 1: Figure S10), demonstrating its ability to capture
local CpG methylation patterns. DeepCpG also performs
strongly on most genomic regions, indicating that a flexi-
ble deep learning method is effective in capturing patterns
of methylation. Similar results were obtained by consider-
ing different metrics (Additional file 1: Figure S10–S12).
Boxplots show performance distributions across 10 inde-
pendent training/test splits of the data, except for Deep-
CpG, where the high computational costs prevented such
investigation. Interestingly, methods based on methyla-
tion rates performed poorly at promoters, underlining
the importance of methylation profiles in distinguishing
epigenetic state near transcription start sites and iden-
tifying meaningful cell sub-populations. For all models,
the imputation performance (in terms of AUC) at active
enhancers was lower, indicating high methylation vari-
ability across cells and neighboring CpG sites as shown
in [8].
In terms of clustering performance, Melissa confirms

that the data supports the existence of a sub-population
of serum cells as suggested previously [27], by return-
ing three clusters in almost all contexts. Further insights
on the biological significance of the clusters obtained
can be gleaned by inspecting the inferred methylation
profiles at relevant regions. Figure 4b shows posterior
methylation profiles for three developmental genes for
each cell sub-population (Additional file 1: Figure S13
shows additional methylation profiles of developmen-
tal genes). Each color corresponds to a different cell
sub-population, with orange profiles corresponding to
2i ESCs which are globally hypo-methylated. The green
and purple profiles correspond to serum cells, which, as
expected, present an increased level of methylation over-
all. However, Melissa identifies a clear sub-population
structure within these serum cells: the purple cluster
clearly represents a sub-population of cells which has
only incompletely transitioned towards the final differ-
entiated state (high global methylation punctuated by
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Fig. 4 Imputation performance and clustering of scM&T-seq mouse ESCs [11] based on genome wide methylation profiles. a Prediction
performance on test set for imputing CpG methylation states in terms of AUC. Higher values correspond to better imputation performance. Each
colored boxplot indicates the performance using 10 random splits of the data in training and test sets; due to high computational costs, DeepCpG
was trained only once and the boxplots denote the variability across ten random sub-samplings of the test set. b Example promoter regions with
the predicted methylation profiles for three developmental genes:Myc, Esrrb, and Nog. Each colored profile corresponds to the average methylation
pattern of the cells assigned to each sub-population, in our case Melissa identified K = 3 clusters

hypo-methylated CpG islands). Interestingly, 2i cells can
be easily separated from serum cells based on methyla-
tion rate alone, due to the global hypo-methylation of
2i cells; however, the sub-population structure within
serum cells appears to be determined by changes in
profiles.
As a second real data set, we analyzed the smaller scBS-

seq data set which consists of only 32 cells (12 2i ESCs and
20 serum ESCs). The imputation performance in terms of
AUC across genomic contexts is shown in Fig. 5. Melissa
retains its high prediction accuracy and is comparable
with DeepCpG across most contexts (see Additional file
1: Figure S14–S16 for performance on different metrics),
even though the full DeepCpG model has slightly bet-
ter performance on this data set. This suggests that the
small number of cells in this data set did not allow an
effective sharing of information. In terms of clustering

performance, Melissa identifies three clusters in the vast
majority of settings, once again underlying the emergence
of epigenomically distinct populations within serum cells
(see Additional file 1: Figure S17 and S18 for example
methylation profiles across genomic contexts).

A note on the comparison with DeepCpG
Melissa and DeepCpG models reported substantially bet-
ter imputation performance compared to the rival meth-
ods and show comparable performance when analyzed on
real data sets, demonstrating their flexibility in captur-
ing complex patterns of methylation. However, the two
methods have significantly different computational per-
formances. In our experiments, Melissa’s runtime was less
than 6 h for all genomic contexts running on a small
server machine utilizing at most ten CPU cores (see
Additional file 1: Table S1 and S2). By contrast, DeepCpG
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Fig. 5 Imputation performance of scBS-seq mouse ESCs [8] based on genome-wide methylation profiles. Shown is the prediction performance, in
terms of AUC, for imputing CpG methylation states. Each colored boxplot indicates the performance using 10 random splits of the data in training
and test sets; due to high computational costs, DeepCpG was trained only once and the boxplots denote the variability across ten random
sub-samplings of the test set

required around 3 to 4 days to analyze each data set on
a GPU cluster equipped with high end NVIDIA Tesla
K40ms GPUs, and had very high memory requirements.
These computational overheads effectively make Deep-
CpG out of reach for smaller research groups. On the
other hand, Melissa operates on a set of genomic contexts
of interest (e.g., promoters), while DeepCpG is designed
for genome-wide imputation; computational performance
of bothmethods will therefore depend on specific choices,
such as the size/number of the regions of interest for
Melissa, or the number of training chromosomes for
DeepCpG.
In addition to the differences in scope between the

two methods, one should also be cautious when directly
comparing prediction performances due to the different
design of the DeepCpG model. DeepCpG is trained on
a specific set of chromosomes and considers each CpG
site independently; hence, it does not have a notion of
genomic region to be trained on and will in any case utilize
information from neighboring CpGs within or outside the
region, information that Melissa and the rival methods do
not have access to.

Conclusions
Single-cell DNA methylation measurements are rapidly
becoming a major tool to understand epigenetic gene reg-
ulation in individual cells. Newer platforms are rapidly
expanding the scope of the technology in terms of assaying
large numbers of cells [14]; however, all technologies are
plagued by intrinsically low coverage in terms of numbers
of CpGs assayed.
In this paper, we have proposed Melissa as a way of

addressing the low coverage issue by sharing information

between CpGs with a local smoothing and between cells
with a Bayesian clustering prior. On both synthetic and
real data, Melissa achieved state-of-the art imputation
performance over a panel of competing methods, includ-
ing DeepCpG [24] and random forests. While achiev-
ing comparable or superior performance to black-box
methods, such as neural networks and random forests,
Melissa is more transparent and needs minimal tun-
ing: all the results shown, on both synthetic and real
data, were obtained with the same settings of the algo-
rithm. Additionally, as all Bayesian methods, Melissa out-
puts are probability distributions that fully quantify the
uncertainty on themodel’s prediction, and which aremore
easily usable for further experimental design compared
to the point-estimates provided by black-box approaches.
Melissa does not require additional annotation data as in
[23] or [28] and does not exploit sequence information like
DeepCpG, but an extension leveraging side data would
be easily accomplished within the Bayesian framework
and would represent an interesting extension for future
research. By using a Bayesian clustering prior, Melissa has
the added benefit of simultaneously uncovering the pop-
ulation structure within the assay, as we demonstrated in
the real data examples; Melissa can therefore be a useful
tool in uncovering epigenetic diversity among cells.
In addition, in this work, Melissa was applied on

pre-defined genomic regions of interest, such as pro-
moters and enhancers; however, one could easily per-
form genome-wide imputation and clustering of single-
cell methylomes by using a sliding (non-overlapping)
window approach. While this paper was under review,
we became aware of a new preprint describing Epiclomal
[29], a method to perform clustering of single-cell DNA
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methylomes using a Bayesian probabilistic model. Epiclo-
mal shares a similar hierarchical structure to Melissa and
alsomodels bisulfite conversion error; however, Epiclomal
does not model the spatial variability of neighboring CpGs
and therefore cannot perform imputation as Melissa does.
While Melissa accounts for heterogeneity in the cell

population structure, it does not allow for heterogeneity
at the single-gene level: each cluster has a single methy-
lation profile within each region, and all variability at
the single locus level is attributed to noise. This rigidity
limits the usefulness of Melissa as a tool to investigate
intrinsic stochasticity in methylation at the single locus
level. Relaxing the modeling assumptions to accommo-
date methylation variability in Melissa is an interesting
topic for future research. Another area where Melissa
could be fruitfully applied is the integrative study of mul-
tiple high-throughput features in single cells. Recently,
Kapourani and Sanguinetti [16] showed that features
extracted from methylation profiles could be effectively
used to predict gene expression in bulk experiments.With
the advent of novel technologies measuring gene expres-
sion and multiple epigenomic features in individual cells
[13], interpretable Bayesian models like Melissa are likely
to play an important role in furthering our understanding
of epigenetic control of gene expression in single cells.

Methods
Melissa model
In order to provide spatial smoothing of the methylation
profiles at specific regions, we adapt a generalized linear
model of basis function regression proposed recently [16]
and further extended and implemented in the BPRMeth
Bioconductor package [21]. The basic idea of BPRMeth
is as follows: the methylation profile associated with a
genomic regionm is defined as a (latent) function f : m →
(0, 1) which takes as input the genomic coordinate along
the region and returns the propensity for that locus to be
methylated. For single-cell methylation data, methylation
of individual CpG sites can be naturally modeled using
a Bernoulli observation model, since for the majority of
covered sites we have binary CpG methylation states (see
Additional file 1: Figure S13). More specifically, for a spe-
cific regionm, we model the observedmethylation of CpG
site i as:

ymi ∼ Bern(ρmi), (1)

where the unknown “true” methylation level ρmi has as
covariates the CpG locations xmi. Then, we define the
BPRMeth model as:

ηmi = w�
mh(xmi),

fm(xmi) = ρmi = g−1(ηmi),
(2)

where wm are the regression coefficients, xmi ≡ h(xmi)
are the basis function transformed CpG locations (here we

consider radial basis functions (RBFs)), and g(·) is the link
function that allows us to move from the systematic com-
ponents ηmi to mean parameters ρmi. Here we consider
a probit regression model which is obtained by defining
g−1(·) =�(·)—where�(·) denotes the cdf of the standard
normal distribution—ensuring that f takes values in the
[ 0, 1] interval. Notice that both BPRMeth and Melissa do
not explicitly model bisulfite conversion errors. Conver-
sion errors are estimated to be relatively rare and below 1%
[30], and we show in our simulation studies that Melissa is
highly robust to the addition of noise mimicking possible
errors.
To account for the limited CpG coverage of scBS-seq

experiments, the BPRMeth model was recently reformu-
lated in a Bayesian framework [21]. The model was made
amenable to Bayesian estimation thanks to a data augmen-
tation strategy [31]. This strategy consists of introducing
an additional auxiliary latent variable zi, which has a Gaus-
sian distribution conditioned on the input w�xi, leading
to the graphical model in Fig. 6.
The BPRMeth model is limited to sharing informati.on

across CpGs via local smoothing (which certainly helps
in dealing with data sparsity); however, in our experience
the coverage in scBS-seq data is insufficient to infer infor-
mative methylation profiles at many genomic regions. We
therefore propose Melissa to exploit the population struc-
ture of the experimental design and additionally share and
transfer information across cells.
Assume that we have N(n = 1, ...,N) cells and each cell

consists of M(m = 1, ...,M) genomic regions, for exam-
ple promoters, and we are interested in both partitioning

Fig. 6 Probabilistic graphical representation of the BPRMeth model
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the cells in K clusters and inferring the methylation pro-
files for each genomic region. To do so, we use a finite
Dirichlet mixture model (FDMM) [32], where we assume
that the methylation profile of the mth region for each
cell n is drawn from a mixture distribution with K com-
ponents (where K < N). This way, cells belonging to
the same cluster will share the same methylation profile,
although profiles will still differ across genomic regions.
Let cn be a latent variable comprising a 1-of-K binary vec-
tor with elements cnk representing the component that is
responsible for cell n, and πk be the probability that a cell
belongs to cluster k, i.e. πk = p(cnk = 1). The conditional
distribution of C = {c1, . . . , cN} given π is:

p(C | π) =
N∏

n=1

K∏

k=1
π
cnk
k . (3)

Considering the FDMM as a generative model, the
latent variables cn will generate the latent observations
Zn ∈ R

M×Im , which in turn will generate the binary obser-
vations Yn ∈ {0, 1}M×Im depending on the sign of Zn, as
shown in Fig. 6. The conditional distribution of the data
(Z,Y), given the latent variables C and the component
parametersW, becomes:

p(Y,Z |C,W,X) =
N∏

n=1

K∏

k=1

[ M∏

m=1
p(ynm | znm) p(znm |wmk ,Xnm)

]cnk

,

(4)

where

p(ynm | znm) = I(znm > 0)ynmI(znm ≤ 0)(111−ynm).

To complete the model, we introduce priors over the
parameters. We choose a Dirichlet distribution over the
mixing proportions, p(π) = Dir(π | δ0), where for sym-
metry we choose the same parameter δ0k for each of the
mixture components. We also introduce an independent
Gaussian prior over the coefficientsW, that is:

p(W | τ ) =
M∏

m=1

K∏

k=1
N (wmk | 0, τ−1

k I). (5)

Finally, we introduce a prior distribution for the (hyper)-
parameter τ and assume that each cluster has its own
precision parameter, p(τk) = Gamma(τk | α0,β0). Having
defined ourmodel, we can nowwrite the joint distribution
over the observed and latent variables:

p(Y,Z,C,W,π , τ |X) =p(Y |Z) p(Z |C,W,X) p(C | π) p(π) p(W | τ ) p(τ ),

(6)

where the factorization corresponds to the probabilistic
graphical model shown in Fig. 7, resulting in the following
hierarchical model:

π ∼ Dir(δ0)
cn | π ∼ Discrete(π)

τk ∼ Gamma(α0,β0)

wmk | τk ∼ N (0, τ−1
k I)

znmi |wmk , xnmi ∼ N (w�
mkxnmi, 1)

ynmi | znmi =
{
1 if znmi > 0
0 if znmi ≤ 0.

Importantly, Melissa is a hybrid between a global unsu-
pervised clustering model and a local supervised pre-
diction model, encoded through the GLM regression
coefficients w for each genomic region. When consider-
ing Melissa as an imputation (or predictive) model, the
training data are coming by using only a subset of CpG
tuples (xnmi, ynmi) for each region. For example, from the
observed Inm CpGs in a given region, Melissa will only see
Inm/2 random CpGs during training, and the remaining
CpGs will be used as a held out test set to evaluate its pre-
diction performance. Note that in any case, either using
all CpGs or a subset during training, Melissa will addition-
ally perform clustering at the global level which is encoded
through the latent variables cn.

Fig. 7 Probabilistic graphical representation of the Melissa model
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Variational inference
The posterior distribution of the latent variables given the
observed data p(Z,C,W,π , τ |Y,X) for theMelissamodel
is not analytically tractable; hence, we resort to approxi-
mate techniques. The most common method for approx-
imate Bayesian inference is to perform Markov Chain
Monte Carlo (MCMC) [33]; however, sampling meth-
ods require considerable computational resources and do
not scale well when performing genome-wide analysis on
hundreds or thousands of single cells. Variational meth-
ods can provide an efficient, approximate solution with
better scalability in this case (see the “Results” section
for a comparison between Gibbs sampling and varia-
tional inference for this model). More specifically, we use
mean-field variational inference [34] which assumes that
the approximating distribution factorizes over the latent
variables:

q(Z,C,W,π , τ ) = q(Z) q(C) q(W) q(π) q(τ ). (7)

Detailed mathematical derivations of the optimal varia-
tional factors are available in Additional file 1: Section 1.
Next, we iteratively update each factor q while holding the
remaining factors fixed using the coordinate ascent vari-
ational inference (CAVI) algorithm which is summarized
in Algorithm 1.

Predictive density andmodel selection
Given an approximate posterior distribution, we are in the
position to predict the methylation level at unobserved
CpG sites. The predictive density of a new observation
y∗, which is associated with latent variables c∗, z∗ and
covariates X∗, is given by:

p(y∗ |X∗,Y) =
∑

c∗

∫ ∫
p(y∗, c∗, z∗, θ |X∗,Y)dθdz∗

	
K∑

k=1

δk∑
j δj

Bern

⎛

⎜
⎝y∗

∣
∣∣�

⎛

⎜
⎝

X∗λk√
I + diag

(
X∗SkXT∗

)

⎞

⎟
⎠

⎞

⎟
⎠

(8)

where we collectively denote as θ the relevant parameters
being marginalized.
It has been repeatedly observed [26] that, when fit-

ting variationally a mixture model with a large number
of components, the variational procedure will prune away
components with no support in the data, hence effec-
tively determining an appropriate number of clusters in an
automatic fashion, i.e., perform model selection. We can
gain some intuition as to why this happens in the following
way.We can rewrite the Kullback-Leibler (KL) divergence
as:

KL(q(θ) || p(θ |X)) = ln p(X) − 〈
ln p(X | θ)

〉
q(θ)

+ KL(q(θ) || p(θ)) (9)

where ln p(X) can be ignored since it is constant with
respect to q(θ). To minimize this objective function,
the variational approximation will both try to increase
the expected log likelihood of the data ln p(X | θ) while
minimizing its KL divergence with the prior distribu-
tion p(θ). Hence, using variational Bayes, we have an
automatic trade-off between fitting the data and model
complexity [19].

Assessing Melissa via a simulation study
To generate realistic simulated single-cell methylation
data, we first used the BPRMeth package [21] to infer
five prototypical methylation profiles from the GM12878
lymphoblastoid cell line. The bulk BS-seq data for
the GM12878 cell line are publicly available from the
ENCODE project [35]. Based on these profiles, we
simulated single-cell methylation data (i.e., binary CpG
methylation states) for M = 100 genomic regions, where
each CpGwas generated by sampling from a Bernoulli dis-
tribution with probability of success given by the latent
function evaluation at the specific site. To mimic the
inherent noise introduced by bisulfite conversion error,
Gaussian noise N (μ = 0, σ = 0.05) was introduced to
the probability of success prior to generating each binary
CpG site. This process can be thought of as generat-
ing methylation data for a specific single cell. Next, we
generated K = 4 cell sub-populations by randomly shuf-
fling the genomic regions across clusters, so now each
cell sub-population has its own methylome landscape.
In total, we generated N = 200 cells, with the following
cell sub-population proportions: 40%, 25%, 20%, and 15%.
Additionally, to account for different levels of similarity
between cell sub-populations, we simulated 11 different
data sets by varying the proportion of similar genomic
regions between clusters. Finally, to assess the perfor-
mance of Melissa for varying number of cells assayed,
we simulated 10 different data sets by varying the total
number of single cells N. The scripts (written in the R pro-
gramming language) for this simulation study are publicly
available on the Melissa repository.

Assessing Melissa on sub-sampled bulk ENCODE data
To faithfully simulate methylation data that resemble
scBS-seq experiments, we generated two additional syn-
thetic data sets by sub-sampling bulk ENCODE RRBS
(GEO: GSE27584) and WGBS (GEO: GSE80911 for H1-
hESC and GSE86765 for GM12878) data, each consisting
of two different cell lines, H1-hESC and GM12878.
The RRBS data are enriched for genomic regions with
high CpG content (using methylation sensitive restric-
tion enzymes such asMspI that recognizes CCGGmotifs)
which predominantly reside near promoter regions and
CpG islands. On the other hand, WGBS experiments in
theory can assay the whole methylome landscape of the
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Algorithm 1 CAVI for Melissa model
1: initialize Gaussian factor λ, S; Dirichlet factor δ0; and Gamma factor α0,β0.
2: Update αk ← α0 + MD/2
3: Update βk ← β0
4: while ELBO has not converged do
5: Set γnmk = (znm − Xnmwmk) � Variational E-step
6: Update rnk ∝ 〈lnπk〉q(πk) + ∑

m
〈− 1

2γ
�
nmkγnmk

〉
q(znm,wmk)

7: � Variational M-step
8: Update δk ← δ0k + ∑

n rnk � Dirichlet distribution parameter

9: Update βk ← β0 + 1
2

∑
m

〈
w�
mkwmk

〉
q(wmk)

� Gamma distribution parameter

10: Update μnmi ← ∑
k rnk

〈
w�
mkxnmi

〉
q(wmk)

� Mean of truncated Gaussian

11: Set 〈znmi〉q(znmi) =
{

μnmi + φ(−μnmi)/
(
1 − �(−μnmi)

)
if ynmi = 1

μnmi − φ(−μnmi)/�(−μnmi) if ynmi = 0

12: Update Smk ←
(

αk
βk
I + ∑

n rnkX�
nmXnm

)−1 � Regression coefficient covariance

13: Update λmk ← Smk
∑

n rnkX�
nm 〈znm〉q(znm) � Regression coefficient mean

14: Update L (q(W,Z,C,π , τ )) � Compute ELBO
15: end while

human genome; however, they require high-sequencing
depth to obtain an accurate estimate of the bulk methy-
lation level at each CpG site. To retain the structure of
missing data observed in scBS-seq experiments (due to
read length), we directly sub-sampled the raw FASTQ files
which essentially lead to discarding individual reads rather
than individual CpGs. For the RRBS data set, from each
cell line, we generated 40 pseudo-single cells by randomly
keeping 10% of the mapped reads from the bulk experi-
ment, resulting in 80 cells when combining both cell lines.
For theWGBS data set, the same number of pseudo-single
cells was generated from each cell line, with the only dif-
ference that only 0.5% of the mapped reads were retained
from the bulk data due to the high-sequencing depth of
the experiments. This process was performed for chro-
mosomes 1 to 6 to alleviate the computational burden.
Subsequently, the same preprocessing steps detailed in the
previous section were performed, with the only difference
that for this study we considered only ± 2.5 kb and ± 5 kb
promoter regions around TSS. Each model, except Deep-
CpG, used 20%, 50%, and 80% of the CpGs as training set,
and the remaining of CpGs were used as a test set to eval-
uate imputation performance. The DeepCpG model used
chromosomes 1 and 3 as training set, chromosome 5 as
validation set, and the remaining chromosomes as test set.

scBS-seq data and preprocessing
Single-cell bisulfite sequencing protocols provide us with
single base-pair resolution of CpG methylation states.
Since we assay the DNA of a single cell, the methylation

level for each CpG site is predominantly binary, either
methylated or unmethylated. However, due to each
chromosome having two copies, a small proportion of
CpG sites have a non-binary nature (see Additional
file 1: Figure S19). To avoid ambiguities, hemi-methylated
sites—sites with 50% methylation level—are filtered prior
to downstream analysis, and for the remaining sites,
binary methylation states are obtained from the ratio of
methylated read counts to total read counts [11].
Two mouse embryonic stem cells (ESCs) data sets were

used to validate the performance of the Melissa model.
The scM&T-seq data set [11] after quality assessment
consisted of 75 single cells out of which 14 cells were
cultured in 2i medium (2i ESCs) and the remaining 61
cells were cultured in serum conditions (serum ESCs).
The Bismark [36] processed data, with reads mapped to
the GRCm38 mouse genome, were downloaded from the
Gene Expression Omnibus under accession GSE74535.
The scBS-seq data set [8] contained 32 cells out of which
12 cells were 2i ESCs and the remaining 20 cells were
serum ESCs, and the Bismark processed data, with reads
mapped to the GRCm38 mouse genome, are publicly
available under accession number GSE56879. For both
data sets, the observed data that are used as input to
Melissa are binarymethylation states: unmethylated CpGs
are encoded with zero and methylated CpGs with one. We
should note that this is the standard procedure for pro-
cessing scBS-seq data [8] and additional information and
visualizations regarding the quality of the scBS-seq data
can be found in the original publications.
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Since Melissa considers genomic regions for a specific
genomic context, we use the BPRMeth package [21] to fil-
ter CpGs that do not fall inside these regions, and create
a simple data structure where each cell is a encoded as a
list, and each entry of the list—corresponding to a spe-
cific genomic region—is a matrix with two columns: the
(relative) CpG location and themethylation state.We con-
sidered six different genomic contexts where we applied
Melissa: protein coding promoters with varying genomic
windows: ± 1.5 kb, ± 2.5 kb, and ± 5 kb around transcrip-
tion start sites (TSS), active enhancers, super enhancers,
andNanog regulatory regions. Due to the sparse CpG cov-
erage, for the three genomic contexts except promoters,
we filtered loci with smaller than 1 kb annotation length,
and specifically for Nanog regions, we took a window of
± 2.5 kb around the center of the genomic annotation. In
addition, we only considered regions that were covered
in at least 50% of the cells with a minimum coverage
of 10 CpGs and had between cell variability; the ratio-
nale being that homogeneous regions across cells do not
provide additional information for identifying cell sub-
populations. The CpG coverage distribution after the fil-
tering process across different genomic contexts is shown
in Additional file 1: Figure S20 and S21. The sparsity level
of the two scBS-seq data sets across different genomic
contexts is shown in Additional file 1: Table S3. It should
be noted that imputation performance is evaluated only
on genomic regions that pass the filtering threshold. We
run the model with K = 6 and K = 5 clusters for the
scM&T-seq and scBS-seq data sets, respectively, and we
use a broad prior over the model parameters.

Performance evaluation
To assess model performance across all genomic contexts,
we partition the data and use 50% of the CpGs in each
cell and region for training set and the remaining 50% as
test set (except DeepCpG, see below). The prediction per-
formance of all competing models, except DeepCpG, was
evaluated on imputing all missing CpG states in a given
region at once. For computing binary evaluation metrics,
such as F-measure, predicted probabilities above 0.5 were
set to one and rounded to zero otherwise.

F-measure The F-measure or F1-score is the harmonic
mean of precision and recall:

F-measure = 2 · precision · recall
precision + recall

. (10)

Gaussian mixture model The input to the Gaussian
mixture model (GMM) is the average methylation rate
across the region; since rates are between (0,1), we
transform them to M values, which follow closer the

Gaussian distribution [22]. The transformation from aver-
age methylation rates to average M values is obtained by:

Mvalue = log2
(

rate + 0.01
1 − rate + 0.01

)
. (11)

Adjusted Rand Index The Adjusted Rand Index (ARI) is
a measure of the similarity between two data clusterings:

ARI =
∑

ij
(nij
2
) −

[∑
i
(
αi
2
) ∑

j
(βj
2
)]

/
(n
2
)

1
2

[∑
i
(
αi
2
) + ∑

j
(βj
2
)] −

[∑
i
(
αi
2
) ∑

j
(βj
2
)]

/
(n
2
) .

(12)

DeepCpG
The DeepCpG method takes a different imputation
approach: it is trained on a specific set of chromosomes
and predicts methylation states on the remaining chro-
mosomes where it imputes each CpG site sequentially
by using as input a set of neighboring CpG sites. This
approach makes it difficult to equally compare with the
rival methods, since for each CpG the input features to
DeepCpG are all the neighboring sites, whereas the com-
peting models have access to a subset of the data and they
make predictions in one pass for the whole region. Since
we only had access to CpGmethylation data and tomake it
comparable with the considered methods, we trained the
CpGmodule of DeepCpG (termedDeepCpGCpG in [24]).
For the scM&T-seq data set, chromosomes 3 and 17

were used as training set, chromosomes 12 and 14 as vali-
dation set and the remaining chromosomes as test set. For
the scBS-seq data set, chromosomes 3, 17, and 19 were
used as training set; chromosomes 12 and 14 as validation
set; and the remaining chromosomes as test set. The cho-
sen chromosomes had at least three million CpGs used
as training set, a sensible size for the DeepCpG model as
suggested by the authors. A neighborhood of K = 20 CpG
sites to the left and the right for each target CpG was
used as input to the model. During testing time, even if
a given genomic region did not contain at least 40 CpGs,
the DeepCpG model used additional CpGs outside this
window to predict methylation states, hence using more
information compared to the rival models. In total, the
DeepCpGmodel took around 4 days per data set for train-
ing and prediction on a cluster equipped with NVIDIA
Tesla K40ms GPUs.

Additional file

Additional file 1: Melissa mean-field variational inference derivations
(section 1), additional figures (section 2), and additional tables (Section 3).
(PDF 884 kb)
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