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Genomic landscape of oxidative DNA
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protection from mutagenesis
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Abstract

Background: DNA is subject to constant chemical modification and damage, which eventually results in variable
mutation rates throughout the genome. Although detailed molecular mechanisms of DNA damage and repair are
well understood, damage impact and execution of repair across a genome remain poorly defined.

Results: To bridge the gap between our understanding of DNA repair and mutation distributions, we developed a
novel method, AP-seq, capable of mapping apurinic sites and 8-oxo-7,8-dihydroguanine bases at approximately
250-bp resolution on a genome-wide scale. We directly demonstrate that the accumulation rate of apurinic sites
varies widely across the genome, with hot spots acquiring many times more damage than cold spots. Unlike single
nucleotide variants (SNVs) in cancers, damage burden correlates with marks for open chromatin notably H3K9ac
and H3K4me2. Apurinic sites and oxidative damage are also highly enriched in transposable elements and other
repetitive sequences. In contrast, we observe a reduction at chromatin loop anchors with increased damage load
towards inactive compartments. Less damage is found at promoters, exons, and termination sites, but not introns,
in a seemingly transcription-independent but GC content-dependent manner. Leveraging cancer genomic data, we
also find locally reduced SNV rates in promoters, coding sequence, and other functional elements.

Conclusions: Our study reveals that oxidative DNA damage accumulation and repair differ strongly across the
genome, but culminate in a previously unappreciated mechanism that safeguards the regulatory and coding
regions of genes from mutations.

Introduction
The integrity of DNA is constantly challenged by damaging
agents and chemical modifications. Base oxidation is a fre-
quent insult that can arise from endogenous metabolic pro-
cesses as well as from exogenous sources such as ionizing
radiation. At background levels, a human cell is estimated
to undergo 100 to 500 such modifications per day, most
commonly resulting in 8-oxo-7,8-dihydroguanine (8-oxoG)
and related products [1], which are then processed into
repair intermediates. At steady state, up to 2400 8-oxoG
sites per cell are reported [2]. However, estimates differ
widely due to differences in methodology [3–10].

Oxidative damage is processed in a two-step process
through the base excision repair (BER) pathway [11].
The damaged base is first recognized and excised by
8-oxoguanine DNA glycosylase 1 (OGG1), leaving an
apurinic site (AP-site). Glycohydrolysis is highly efficient,
with an 8-oxoG half-life of 11 min [12]. AP-sites are re-
moved through backbone incision by AP-lyase (APEX1),
and end processing through flap-endonuclease 1 (FEN1),
and the base is subsequently replaced with an undamaged
nucleotide. Alternatively, in short-patch base excision re-
pair, replacement is dependent on polymerase beta. Other
sources of AP-sites include spontaneous depurination and
excision of non-oxidative base modifications, such as uracil.
Cells are reported to typically present with a steady state of
~ 15,000 to ~ 30,000 AP-sites per cell, which includes the
associated beta-elimination product [2, 13]. Left unrepaired,
8-oxoG can compromise transcription [5–7], DNA replica-
tion [8], and telomere maintenance [9]. Also, AP-sites can
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lead to genomic instability and compromise genomic
processes [14]. Moreover, damaged sites provide direct and
indirect routes to C-to-A mutagenesis [10, 15, 16].
Ionizing radiation is one of the most relevant exogenous

sources of high-level oxidative DNA damage and DNA
strand breaks. Each gray (Gy) is estimated to lead to ~ 106

ionization events in the nucleus, only ~ 2000 of which are
supposed to target DNA directly [17]. Most DNA damage
from ionizing radiation occurs indirectly from radiolysed
water and 60–70% can be prevented through radical scav-
enging [18, 19]. While absolute numbers differ throughout
the literature, Lehnert estimates 1000–2000 base modifi-
cations per gray, 250 alkali labile sites, 1000 single-strand
breaks (SSB), and 40 double-strand breaks. Others report
base modifications to be threefold more prevalent than
SSBs [20] or even several orders of magnitude increased
[21, 22]. Interestingly, direct formation of AP-sites how-
ever has been shown not to increase more than 5% from
background levels [23]. Therefore, after ionizing radiation,
most AP-sites likely arise from excision of oxidized bases,
which comprise mostly of 8-oxoG and the related modifi-
cation FaPy-guanine [24].
Though originally controversial [25, 26], there is now

broad acceptance that mutation rates vary across different
genomic regions. Background mutation rates in Escherichia
coli were shown to vary non-randomly between genes by
an order of magnitude, with highly expressed genes display-
ing lower mutation rates [27]. In cancer genomes, single
nucleotide variants (SNVs) tend to accumulate preferen-
tially in heterochromatin [28, 29]. More recently, it was re-
ported that SNV densities in cancers are lower in regions
surrounding transcription factor binding but are elevated at
the binding sites themselves and at sites with high nucleo-
some occupancy [30–33]. These variabilities likely arise
through a combination of regional differences in damage
sensitivity and the accessibility to the DNA repair machin-
ery [34]. However, since mutations represent the endpoint
of mutagenesis, it is impossible to tease apart the contribu-
tions from damage and repair through re-sequencing alone.
The role of oxidative damage in regional differences of

mutagenesis remains largely unclear. Repair intermedi-
ates remain unexplored, but the genome-wide distribu-
tion of 8-oxoG has been studied through chemical
enrichment [35–37] and immunoprecipitation [35–39].
The specificity of 8-oxoG antibodies, however, remains
questionable [36, 40, 41], and the studies using chemical
enrichment also arrive at disparate conclusions. Both
Wu et al. [37] and Ding et al. [36] find 8-oxoG enriched
at telomeres in yeast and mouse embryonic fibroblasts,
respectively. However, Wu et al. find 8-oxoG largely de-
pleted at promoters, while Ding et al. report increased
damage at these sites. Therefore, we reassessed the raw
data and did not find evidence for increased 8-oxoG at
promoters (Additional file 1: Figure S6). Using antibodies,

however, peaks of 8-oxoG accumulation under conditions
of hypoxia have been reported in active promoters linked
to specific transcription factors [35, 36]. On a larger scale,
studies found accumulation in GC and CpG island rich,
early replicating DNA [38], but also in gene deserts and
the nuclear periphery [39]. Some of these apparently con-
tradicting conclusions may be explained through different
levels of resolution, experimental systems, and method-
ology. So far, ionizing radiation-induced oxidative damage
has not been addressed genome wide. In addition, base
modifications, which have been processed into the more
persistent AP-sites remain hidden from the previously
used techniques.
To further our understanding of the molecular mecha-

nisms underlying local mutation rate heterogeneity, direct
and specific measurement of DNA damage types and
repair intermediates is required at high resolution and on
a genomic scale. Dissecting these mechanisms will help
understand the local sensitivities of the genome and why
certain regions appear to be protected.

Results
A genome-wide map of AP-sites
To measure AP-sites across the genome, we developed an
approach that specifically uses detection via a biotin-labelled
aldehyde-reactive probe under pH neutral conditions, which
has been well established for the specific detection of
AP-sites since its development by Kubo et al. in 1992 [13,
42–46]; (Fig. 1a, Additional file 1: Figure S1, and Add-
itional file 1: Figure S2A). While the same probe has been
used to measure 5-formyl-cytosine (5-fC), the reactivity with
5-fC requires an acidic environment (pH5) with anisidine
and 24-h incubation at 25 °C [47]. Under neutral conditions
(pH7), 1 h at 37 °C, the probe is highly specific for the alde-
hydes occurring at AP-sites, which is the experimental con-
dition we use (see Additional file 1: Figure S2 in Raiber et al.
[47]); 5-fC is generated through the TET enzymes primarily
in CpG islands and enhancers during early development,
while the genome is demethylated [47, 48]. Under wildtype
conditions, 5-fC levels do not exceed 20 ppm of cytosines
[49]. Levels in adult tissues are much lower and anticorrelate
with cell proliferation [50]. Due to the chemical specificity of
the method and the expected absence of notable levels of
5-fC in the cell line used, 5-fC is not expected to contribute
to measurements in the current study.
After fragmentation of genomic DNA, biotin-tagged

DNA with the original damage sites was pulled down using
streptavidin magnetic beads and prepared for high-
throughput sequencing. The signal was quantified as the
log2 fold change of normalized AP-site enrichment over in-
put (Relative Enrichment), with positive values indicating
regions of damage accumulation. As the distribution of
damage was broad, showing only gradual changes beyond a
number of hot spots in repetitive elements (see below and
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Figs. 1d and 3g, h), we analyzed the data using a binning
approach and by assessing damage distribution relative to
genomic features [51].
Figure 1b provides the first high-resolution, genome-wide

view of AP-sites after X-ray treatment. Increase in damage
levels has been confirmed using colorimetric measure-
ments for AP-sites (Additional file 1: Figure S2B) and im-
munostaining for γH2AX foci (Additional file 1: Figure
S2C). Measurements represent AP-sites acquired in
response to X-ray treatment on top of background levels in
HepG2 cells with good reproducibility (Additional file 1:
Figure S3E). It immediately highlights the extreme variabil-
ity in the relative density of AP-sites across the human gen-
ome: though the genome-wide mean Relative Enrichment
is 0.1, local enrichments vary from less than − 0.6 to more
than 3.0. Hot and cold spots are found across all chromo-
somes and do not appear to follow a particular distribution
pattern: whereas chromosome 19 presents damage hot
spots throughout the chromosome, on chromosome 7, we
observe pericentromeric hot spots. Figure 1c shows a more
detailed profile of chromosome 16, including distributions
for treated and untreated samples. The profiles of the
X-ray-treated samples indicate an overall treatment-
dependent accumulation of damage; however, local relative
distribution patterns of pre-existing background damage
are maintained, suggesting that hot spots gain the most
additional damage. In Fig. 1d, we zoom further into an
8-kb region upstream of the MALT1 gene. Here, differ-
ences between the treated and untreated samples become
apparent, with damage after X-ray exposure particularly ac-
cumulating on Alu transposable elements in comparison to
the surrounding sequence. Background AP-site levels indi-
cate a similar albeit less pronounced trend of enrichment
in Alu sequences. These plots exemplify how variable dam-
age enrichments can be, with hot and cold spots ranging
from ~ 50–500 bp to kilobase resolution.
To assess oxidative damage as the sum of AP-sites and

8-oxoG, we applied recombinant OGG1 in vitro to the
extracted DNA (Fig. 1a). Under the conditions chosen,

any remaining 8-oxoG is excised in a largely
sequence-independent fashion after DNA extraction [52]
to result in a set of secondary AP-sites and to a lesser
extent the associated beta-elimination product [53]. In
vitro, oligo-nucleotides with 8-oxoG-derived secondary
AP-sites were pulled down with 12.1% recovery rate
relative to input, an 11-fold increase as compared to the
oligonucleotide containing guanine (Additional file 1:
Figure S2A). This 1.1% background recovery rate repre-
sents for a large part heat-induced DNA damage,
prompted by the oligonucleotide annealing step.
With the conversion of 8-oxoG into AP-sites, both

damage types are measured simultaneously. However,
any difference in enrichment patterns between the original
and OGG1-enriched samples indicates the presence of un-
processed 8-oxoG in vivo. Although quantitatively different,
the control and X-ray-treated samples are highly correlated
overall (Fig. 1e). Moreover, the OGG1-enriched samples are
very similar to the primary AP-sites, indicating that at
100-kb resolution, the OGG1 enrichment does not
substantially alter the distribution. On these grounds, the
AP-site measurements after X-ray treatment, the sample
with the most pronounced patterns is shown as representa-
tive in the following analyses. OGG1-enriched samples are
highlighted, where differences become apparent.

Genomic features shape distribution of AP-sites and 8-oxoG
Damage accumulates preferentially in euchromatin but not
heterochromatin
To identify potential causes of variation across the genome,
we compiled for the same HepG2 cell line a set of 18 gen-
omic and epigenomic features previously associated with
DNA damage, repair, and patterns of mutagenesis (Fig. 2a).
Earlier studies reported that SNV density in cancer ge-
nomes was positively correlated with heterochromatin
marks (e.g., H3K9me3) and negatively correlated with eu-
chromatin marks (e.g., H3K4me3, H3K9ac) [29]. Here,
AP-sites display the opposite trend, correlating with open
chromatin and anticorrelating with closed chromatin, as

(See figure on previous page.)
Fig.1 Oxidative damage is heterogeneously distributed at different scales of resolution. a Schematic of AP-seq, a new protocol to detect apurinic-sites (AP-
sites). DNA containing these sites are biotin-tagged using an aldehyde reactive probe (ARP), fragmented, and pulled down with streptavidin. The enriched
DNA is processed for sequencing and mapped to the reference genome. The damage level across the genome is quantified by assessing the number of
mapped reads. To check for unprocessed 8-oxoG in addition to AP-sites, we perform an in vitro digest of extracted genomic DNA with OGG1 and repeat
the AP-site pulldown. b Genome-wide map of AP-site distribution after X-ray treatment. The color scale represents the log2 fold change of normalized AP-
seq enrichment over input (Relative Enrichment) in 100-kb bins across the human genome, averaged across biological replicates. Gray regions represent
undefined sequences in the human genome, such as centromeres and telomeres. Damage levels are highly correlated between treatment conditions at
100-kb resolution. c More detailed view of AP-site distribution on Chromosome 16. Plot lines depict the average Relative Enrichment for AP-sites in samples
after X-ray treatment (green) and without treatment (blue). Shaded boundaries show standard error of the mean for three biological replicates. Untreated
and X-ray-treated samples display very similar damage profiles. d Genome browser views of damage distributions for untreated and X-ray-treated samples
and their corresponding input samples across an 8-kb region upstream of MALT1. Damage levels are represented as unnormalized sequencing depth of
the pooled biological replicates. At high resolution, it becomes apparent how sharp the damage levels rise over background at Alu elements after X-ray
treatment, which leads to more distinct patterns than the broader distributed untreated control. e Scatterplots of the correlation in average Relative
Enrichments of samples with differing treatment and OGG1-enrichment conditions. Damage levels are highly correlated across all conditions
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previously suggested for 8-oxoG [38]. At first glance, it is
surprising that SNVs and DNA damage should show
opposing trends. However, mutagenesis is a multi-step
process, with repair efficiency [54, 55] and replication
accuracy [32] for instance being influenced by the chroma-
tin state. Observations are upheld at higher resolutions for
many features; for instance, Spearman’s correlation with
H3K9me3 is −0.48 at 1-Mb resolution, −0.34 at 100-kb,
−0.3 at 10-kb, and −0.14 at 1-kb resolution. For other fea-
tures, these correlations break down; DNase I hypersensi-
tivity correlates at low resolution (Spearman’s r = 0.5 and
0.3 at 1-Mb and 100-kb, respectively), but the relationship
is lost at higher resolutions (r = 0.06 and −0.06 at 10-kb
and 1-kb, respectively). This suggests that more detailed
genomic features and functional elements also play a role
in shaping the local damage distributions.

Damage enrichment is GC content dependent
As oxidative damage predominantly occurs on guanines
[1], base content is expected to be a prime determinant
of genome-wide distribution. The heatmap in Fig. 2a
shows that this is true in general, with average damage
levels in 100-kb windows correlating with GC content
(Spearman’s r = 0.37). However, closer examination
shows a more complex relationship: in Fig. 2b, we plot
average damage levels in 1-kb windows against their GC
content. While there is a clear increase in damage as GC
content rises from 25 to 47%, this relation breaks down
above 47% GC and damage levels drop sharply. This in-
dicates that while there is a larger proportion of the re-
ceptive base with increasing GC content, damage in
regions of high GC content cannot be explained by base
composition alone.

Gene promoters and bodies show selective protection from
damage
Next, we interrogated damage distributions over coding re-
gions by compiling a metaprofile for 23,056 protein-coding
genes (Fig. 2c and Additional file 1: Figure S4B). The analysis

reveals rigid compartmentalization, with relative damage
levels varying substantially between elements and opposed
to GC content distribution. Damage is dramatically reduced
within genes compared to flanking intergenic regions (Rela-
tive Enrichment = 3.8), most prominently at the transcrip-
tional start (Relative Enrichment =− 8.0), 5′ UTRs (Relative
Enrichment = − 6.9), exons (Relative Enrichment = − 6.1),
and termination sites (Relative Enrichment = − 5.8). In stark
contrast, introns show high damage (Relative Enrichment =
0.4), though still below intergenic levels. Intron-exon junc-
tions are accompanied by steep transitions in damage indi-
cating the sharp distinction between coding, regulatory, and
non-coding regions (Relative Enrichment changes from −6.0
to −0.5 within 300 bp around the 3′-exon junction). Dam-
age levels rapidly rise again downstream of termination sites
towards intergenic regions (Relative Enrichment shifts from
− 4.3 to 2.0 within 500 bp).
Promoters and transcription start sites have the lowest

damage levels of any functional element in the genome
(average Relative Enrichment = − 8.0 compared with inter-
genic average of 3.8), similar to what has been shown for
8-oxoG and alkylation adducts together with their result-
ing AP-sites in yeast [37, 55]. Unlike SNVs and other dam-
age types, which decrease with rising gene expression
levels, we do not detect an association between AP-sites
and expression (Fig. 2d and Additional file 1: Figure S5A).
There is a substantial GC content effect (Fig. 2e and Add-
itional file 1: Figure S5B), but in contrast to expectations
from base composition alone, damage levels fall as GC
content rises (Relative Enrichment = 1.1 at 45% GC and
Relative Enrichment = − 12.6 at > 64% GC).

Retrotransposons accumulate large amounts of damage
Retrotransposons [56] provide a fascinating contrast to
coding genes: long interspersed nuclear elements
(LINEs) possess similar structures to genes with an RNA
Pol II-dependent promoter and two open reading frames
(ORFs), whereas short interspersed nuclear elements
(SINEs) resemble exons in their nucleotide compositions

(See figure on previous page.)
Fig. 2 Oxidative damage distribution is associated with genomic features. a Bar plot displays the average correlation of damage levels with large-scale
chromatin and other features in HepG2 cells at 100-kb resolution. Damage correlates with euchromatic features and anticorrelates with
heterochromatic ones, the opposite of that observed for cancer SNVs. The heatmap shows the relationship between the features, grouped using
hierarchical clustering. b The plot shows dependence between Relative Enrichment of damage and genomic GC content at 1-kb resolution. Damage
levels increase with GC content and then surprisingly fall in high GC areas. The blue line marks the genomic average GC content of 41%. c Metaprofile
of Relative Enrichment over ~ 23,000 protein-coding genes (ngenes = 23,056, npromoters = 48,838, n5UTRs = 58,073, nexons = 214,919, nintrons = 182,010,
n3UTRs = 28,590, ntermination = 43,736, nintergenic = 22,480). Damage levels for UTRs, exons, introns, and intergenic regions are averaged across each
feature due to their variable sizes. GC content is depicted for the same regions smoothed with a Gaussian smooth ranging over 100 bp. Coding and
regulatory regions are depleted for damage despite their increased GC content, whereas introns have near intergenic damage levels. d, e Boxplots
depict damage levels at 48,838 promoters binned into unexpressed and expression deciles (d) and average GC content deciles (e). Promoters are
defined as the transcriptional start sites ± 1 kb. Damage is not transcription-dependent but reduces with increasing promoter GC content. f, g
Metaprofiles of Relative Enrichments and average GC contents across 848,350 Alu and 2533 LINE elements. There is a very large accumulation of
damage inside these features. All panels display relative AP-site enrichment for X-ray-treated samples; for corresponding plots of the other treatment
conditions, see Additional file 1: Figure S4A-D. Error bars and shaded borders show the standard error of mean across three biological replicates
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and presence of cryptic splice sites. Unlike coding genes
though, LINEs and SINEs accumulate staggeringly high
levels of damage. Alu elements, the largest family among
SINEs, show by far the highest damage levels of any an-
notated genomic feature: a metaprofile of > 800,000 Alu
elements in Fig. 2f (and Additional file 1: Figure S4C)
peaks at an average Relative Enrichment of 59, much
higher than the genomic average of 0.1. The damage
profile rises and falls within 500 bp. Interestingly, unlike
promoters and exons, enrichment in intronic Alus in-
creases with GC content (Additional file 1: Figure S5C).
Similar to Alus, a metaprofile of > 2500 LINE elements in
Fig. 2g and Additional file 1: Figure S4D displays heteroge-
neous but high levels of damage accumulation: like coding
genes, there is reduced damage at promoters (average
minimum Relative Enrichment = − 5.2), but in contrast to
genes, there is a gradual increase in damage from the 5′
to 3′end, peaking at a Relative Enrichment of 26.9 near to
the end of the second ORF. A difference in the distribu-
tion pattern between AP-sites and OGG1-enriched
AP-sites suggests differential patterns of 8-oxoG accumu-
lation, possibly through formation of secondary DNA
structures (see below) in LINE elements [57].
Retrotransposons, though usually silenced through

epigenetic mechanisms [58], can be activated through
loss of repair pathways [59], by DNA damage in gen-
eral [60] and ionizing radiation in particular [61].
How DNA damage or repair affects such silencing
mechanisms is currently unknown. One might specu-
late that DNA damage at these positions could lead
to unwanted LINE transcription, for instance through
repair-associated opening of chromatin. These distinct
and unique damage patterns of both protection and
strong accumulation of damage within one functional
element suggest the existence of targeted repair or
protective mechanisms that are unique to
retrotransposons.

Transcription factor binding sites, G-quadruplexes, and
other regulatory sites
Next, we examine the most detailed genomic features
previously associated with mutation rate. In Fig. 3a–c
and Additional file 1: Figure S5D, we assess the impact
of DNA-binding proteins: there is a universal U-shaped
depletion of damage levels ± 500 bp over the binding site
regardless of the protein involved, suggesting that the
act of DNA binding itself is a major protective factor.
We find the greatest reduction in damage for actively
used binding sites that overlap with DNase hypersensi-
tive regions in the HepG2 cell line. However, a smaller
reduction is also present for inactive sites, indicating that
the effects go beyond simple DNA binding. It is notable
that the accessibility of the site overrides the contribu-
tion of the GC content to damage levels (Fig. 3b).
GC-rich features are particularly interesting because of

the complex relationship between GC content, protein
binding, and damage levels. CpG islands are frequently lo-
cated in promoters and display reduced damage (Fig. 3d
and Additional file 1: Figure S4E). Most surprising is the
dramatic reduction in damage at CpG islands outside pro-
moters and DNase-hypersensitive regions, indicating that
the localization in promoters is not the main reason for
damage reduction; in fact, it is possible that the reduction
in damage for high-GC promoters might be explained by
the presence of CpG islands and not vice versa.
Another feature of GC-rich sequences are G-quadruplexes

(G4 structures) formed by repeated oligo-G stretches.
G-quadruplexes are prevalent in promoters [62], LINE retro-
transposons [57], and telomeric regions [63], where they
impact telomere replication and maintenance [64]. A meta-
profile for > 350,000 predicted G4 structures display an
asymmetric reduction in damage, in which the minimum
occurs just downstream of the G-quadruplex center (Fig. 3e
and Additional file 1: Figure S4F). In line with
hypoxia-induced 8-oxoG accumulation at G4 structures [35],

(See figure on previous page.)
Fig. 3 Oxidative damage distribution is associated with regulatory sites and repeats. a Metaprofiles of Relative Enrichments centered on CTCF and DNA
binding sites within and outside DNase hypersensitive regions (DHS; nCTCFinDHS = 37,763, nCTCFnotDHS = 10,908, nTFbsInDHS = 253,613, nTFbsNotDHS = 5,463,612).
Damage levels are reduced around binding sites. Shaded borders show the standard error of mean across biological replicates. b Scatter plot of average
Relative Enrichments and GC contents ± 500 bp of binding sites for each transcription factor excluding those within 500 bp of a CTCF binding site as these
represent a special case (see Additional file 1: Figure S5D). Binding sites are separated into within and outside DNase hypersensitive sites. Damage levels are
universally reduced regardless of transcription factor, with particularly lowered levels for actively used sites in DHS regions. c Metaprofiles centered on binding
sites for four selected transcription factors. d Metaprofiles centered on CpG islands, within and outside promoters and DHS regions (nDHS = 17,565, nNotDHS =
9878, nPromoter = 14850, nNotPromoter = 12,593). Damage levels are reduced regardless of location and accessibility. e Metaprofiles centered on predicted G-
quadruplexes (n= 359,449). There are asymmetrically reduced damage levels for AP-sites, but not for OGG1-enriched AP-sites. f Bar plots of average Relative
Enrichments in G-quadruplexes at telomeric repeats across the four treatment and processing conditions. Damage levels are increased in OGG1-enriched
samples. Error bars show the standard error of mean across three biological replicates. g Genome browser views of unnormalized damage levels in ~ 30-kb
locus surrounding LINC00955, including microsatellite repeats. Some groups of microsatellites accumulate large amounts of damage and reduced 8-oxoG
processing. h Scatter plot displaying average damage levels in different microsatellite types for the AP-site and OGG1-enriched samples. Reverse
complementary repeats were assigned to the alphabetically first repeat. Most types display similar damage levels in the two processing conditions; however,
several display elevated damage in the OGG1-enriched sample. All panels display measurements for X-ray-treated samples, unless indicated otherwise. For
corresponding plots of CpG islands in general and G-quadruplexes with the other treatment conditions, see Additional file 1: Figure S4E and F
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we identify G-quadruplexes as one of the few features with
clear differences between the 8-oxoG and AP-site
distributions, exhibiting a particular enrichment at the center
of G4 structures. This finding is particularly relevant for telo-
meric repeats (Fig. 3f), where oxidized bases impact on tel-
omerase activity and telomere length maintenance [65].
These repeats are thought to form G4 structures, but in con-
trast to quadruplexes in general, telomeres present with a
mild increase in AP-sites after X-ray treatment (average Rela-
tive Enrichment = 1.1) and stronger enrichment of
OGG1-enriched AP-sites (average Relative Enrichment =
2.3).
Microsatellites are 3–6-bp sequences that are typically

consecutively repeated 5–50 times. Whereas GC-rich
microsatellite repeats show generally reduced damage,
most simple repeats show an accumulation of damage;
this is depicted for individual repeat sites at the
LINC00955 locus (Fig. 3g). The motifs (GAA)n, (GGAA)n,
and (GAAA)n accumulate the largest amounts of damage
(Fig. 3h). Interestingly, specific sequences display preferen-
tial damage enrichment in the OGG1-enriched samples,
such as (CCCA)n and (ATGGTG)n. Microsatellites are
capable of forming non-B-DNA structures such as hair-
pins [66]; we suggest that changes in the DNA’s local
structural properties impair 8-oxoG processing on these
genomic features with possible regulatory functionality.

Chromatin architecture
Chromatin loop anchors represent a special feature in
DNA repair. On the one hand, tight binding by the
cohesin complex is described to block nucleotide excision
repair [67]; on the other hand, DNA damage response and
repair organization were shown to originate from loop
anchors [68]. Investigating the effect of chromatin
organization on AP-site distribution, we used overlapping
peaks of CTCF, RAD21, and SMC3 as a proxy for the

location of 18,242 chromatin loop anchors (Fig. 4a, b). We
found damage strongly reduced at the loop anchors them-
selves (Relative Enrichment less than − 5; Fig. 4c) with a
steep increase to a Relative Enrichment of ~ 2.5 within
500 bp. Stratifying loop anchors by the chromatin states
on both sides based on H3K36me3 and H3K27me3 cover-
age within 10-kb of the anchor (Fig. 4d–f ) confirms the
previous findings of increased AP-sites in active chroma-
tin (Fig. 4g–i). However, in chromatin loops that insulate
active from inactive chromatin, AP-site distribution re-
duces with chromatin activity, irrespective of whether the
inside or outside of the loop represents the active compo-
nent. It is therefore conceivable that beyond the protec-
tion of the loop anchor itself, protection from or repair of
AP-sites might be given preference in the active chroma-
tin compartment.

SNVs in oxidative damage-dependent cancers reflect
underlying damage profiles
Lastly, we address how the distribution of oxidative
DNA damage is reflected in the landscape of SNVs in
cancer genomic data. We compiled a dataset of 8.6
million C-to-A transversions, the major mutation type
caused by oxidative damage [69], from 2401 cancer
genomes [70]. These were stratified by the proportion
attributable to COSMIC Mutational Signature 18 [71,
72], which has been suggested to arise from genomic
8-oxoG mispairing with adenine [73, 74].
In most tumors, about 9% of C-to-A SNVs occur in re-

gions of high GC content (Fig. 5a). However, tumors dis-
play decreasing proportions of SNVs in GC-rich regions
with rising amounts of Signature 18 exposure (Fig. 5a),
following the expected trend for oxidative damage.
In addition, we investigated 4.8 million T-to-G trans-

versions and related their GC content preference to Sig-
nature 17 (Fig. 5b). This signature has been associated

(See figure on previous page.)
Fig. 4 Oxidative damage patterns follow chromatin changes at chromatin loop anchors. a Loop anchors are defined by overlaps of a canonical CTCF
motif with CTCF peaks as well as the cohesin components RAD21 and SMC3. Loop anchor sites (n = 18,242) were localized to the center of the CTCF
motif and oriented accordingly. b Mean read coverage around the loop anchors is depicted for all three components. c AP-site distribution,
determined as Relative Enrichment of AP-sites after X-ray treatment. For corresponding plots depicting the other treatment conditions, see
Additional file 1: Figure S4G. d Based on the orientation of the loop anchor, chromatin status was determined outside (− 10 kb) and inside (+ 10 kb) of
the chromatin loop. e As markers of active and inactive chromatin, the log2 ratios of H3K36me3 and H3K27me3 read coverage outside and inside the
loop are depicted relative to the loop anchors. Their ratio is taken as a cut-off to categorize the insulation properties of the loop anchor. Loop anchors
with a differential log2 ratio of 1.2 are defined as anchors that lead to a swap from inactive to active chromatin “swap ON” (n = 2021). A differential
log2 ratio below − 1.2 is separating anchors that lead to a swap from active to inactive chromatin “swap OFF” (n = 1767). Neutral loop anchors were
differentiated further as depicted in f. Neutral loop anchors that do not lead to a change in chromatin are differentiated by their mean H3K36me3 and
H3K27me3 coverage ± 10 kb. Loops are defined to be in inactive chromatin “OFF” (n = 10,479), if log2(H3K27me3/H3K36me3) exceeds 2. Otherwise,
loop anchors are considered to be in open chromatin “ON” (n = 3975). g H3K27me3 and H3K36me3 mean coverage distribution over the loop anchor
classification illustrates the changes of chromatin states. Comparison to AP-sites, determined as relative enrichment after X-ray treatment (mean ±
standard error of the mean), shows a reduction of AP-sites at a change into active chromatin. Loop anchors in inactive chromatin are low in AP-sites,
despite inactive chromatin adjacent to active chromatin showing the highest damage levels. AP-sites are quantified in h as mean relative enrichment
at the loop anchors ± 10 kb, and changes in AP-site prevalence are quantified in i as the mean relative differential enrichment at loop anchor + 10 kb
minus loop anchor − 10 kb with significantly different changes of damage levels between the “swap ON” and “swap OFF” categories, p < 0.001 by
Wilcoxon rank test, indicated by asterisks
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with oxidative DNA damage related to oxidative stress
induced by gastroesophageal reflux [75, 76]. Signature
17 is believed to arise from incorporation of modified
bases from an oxidized dNTP pool during replication.
Hoogsteen base pair-derived mismatches between
8-oxo-dGTP and adenine that evade repair can result
T-to-G mutations. For all tumors, a median proportion
of 9% of T-to-G mutations occur in GC-rich DNA.
Whilst Signature 17 however contributes more than a
quarter of all T-to-G mutations, this median falls below
3%, more than twice the decline expected from sequence
content alone (Additional file 1: Figure S9F). In conclu-
sion, mutations from both signatures linked to oxidative
DNA damage are depleted in GC-rich DNA, resembling
the observed AP-site distribution. Interestingly, the im-
pact of Signature 17 is dependent on damaged nucleo-
tide incorporation and repair efficiency. It is not
dependent on oxidative damage impact on genomic
DNA. Therefore, this analysis indicates GC content pref-
erences of oxidative damage repair.
Lastly, we compiled a dataset of 3.4 million C-to-A

transversions from eight cancer genomes defective in
polymerase epsilon (Pol E) activity. Under normal condi-
tions, Pol E-proofreading prevents 8-oxoG-A mis-
matches, but in the absence of this activity, such
mismatches are expected to result in C-to-A mutations
of yet unknown proportion [71]. Thus, we investigated
whether the distribution of SNVs in the absence of Pol
E-proofreading would follow the underlying oxidative
damage pattern and reflect the local differences in
damage susceptibility or repair preferences [72].
In most tumors, about 9% of C-to-A SNVs occur in re-

gions of high GC content (Fig. 5c; however, the proportion
drops to just 3% among Pol E-defective tumors, in line
with the unexpected depletion of oxidative damage in these
genomic regions (Fig. 2b). We also observed that damage

is preferentially distributed in euchromatin at 100-kb reso-
lution, whereas SNVs tend to accumulate in late replicating
heterochromatin; unsurprisingly at this resolution, the
damage and SNV densities are anticorrelated (Spearman’s
r = − 0.49 and − 0.45 for proofreading-defective and control
tumors, respectively). Reduced mutation rates in high GC
content DNA do however occur irrespective of replication
timing (Additional file 1: Figure S8).
We focused on the proofreading-defective and control

tumor samples for the high-resolution genomic features,
as they contain the largest numbers of SNVs. We also
related these patterns to the equally prominent C-to-T
mutations (Additional file 1: Figure S7), which are
thought to arise from different mechanisms, e.g., uracil
bypass and true C-dA misincorporation [77, 78], mecha-
nisms that are partially dependent on base excision re-
pair. In protein-coding genes, the SNV distribution for
Pol E-defective tumors is remarkably similar to the dam-
age profiles (Fig. 5d and Additional file 1: Figure S7A):
decreased rates of C-to-A transversions at the TSS,
5′-UTR, and exons and increased rates in introns. The
profile is lost in control tumors: we speculate that bulky
adducts or strand breaks—a distinct form of damage—
cause the accumulation of SNVs at the promoter. Inter-
estingly C-to-T SNVs show opposite trends in exons
(Additional file 1: Figure S7A). C-to-A SNVs are also de-
pleted from GC-rich genomic features in Pol E-defective
tumors, including CTCF binding sites, transcription
factor binding sites, CpG islands, and G-quadruplexes.
The patterns are lost in the controls (Fig. 4e–h and
Additional file 1: Figure S7B-E). The difference between
the two tumor sets indicates that at high resolution, the
distribution of distinct damage types dominates the
ultimate SNV profiles. However, there is a striking diver-
gence from damage distributions in retrotransposons
(Fig. 5i, j and Additional file 1: Figure S7F and G);

(See figure on previous page.)
Fig. 5 Oxidative damage patterns are reflected in cancer mutagenesis. a Boxplots of the proportion of C-to-A SNVs (including the reverse
complement G-to-T) in genomic regions of high GC content (> 50%). Tumor samples are separated into four groups according to Mutational
Signature 18 contributions (n< 0.1 = 1398, n0.1–0.4 = 322, n0.4–0.6 = 540, n> 0.6 = 141). Asterisks indicate significance of p < 0.001 by Wilcoxon rank test
comparing the different Signature 18 proportions to Signature 18 < 0.1. Bar plots depict the original COSMIC mutational signatures. Tumors that
are high in Signature 18 display lower proportions of SNVs in GC-rich regions, while tumors with mutations in OGG1, APEX1, or FEN1 show
higher proportions. b Boxplots of the proportion of T-to-G SNVs (including the reverse complement A-to-C) in genomic regions of high GC
content (> 50%). Tumor samples are separated into four groups according to Mutational Signature 17 contributions (n< 0.1 = 2255, n0.1–0.25 = 78,
n0.25–0.5 = 59, n> 0.5 = 9). Asterisks indicate significance of p < 0.001 by Wilcoxon rank test comparing the different Signature 17 proportions to
Signature 17 < 0.1. Tumors that are high in oxidative damage signatures display lower proportions of their respective signature mutations C-to-A
or T-to-G in GC-rich regions. c Boxplots of the proportion of C-to-A SNVs in genomic regions of high GC content (> 50%). Tumor samples are
separated into those that are Pol E-proofreading defective (n = 8) and to all other tumors (n = 2694). Asterisks indicate significance of p < 0.001 by
Wilcoxon rank test comparing the PolE proofreading deficient to competent. Tumors that are proofreading defective and high in Signature 18
display lower proportions of SNVs in GC-rich regions. d Metaprofile of SNV rates over ~ 23,000 protein-coding genes in proofreading-defective
and control tumors. The damage profile is overlaid for comparison. The oxidative damage-dependent SNV profiles in proofreading-defective
tumors show similar distributions to AP-sites, whereas the pattern is lost in control tumors. e–h Metaprofiles of SNV rates centered on CTCF
binding sites (n = 48,671; e), transcription factor-binding sites in DHS regions (n = 253,613; f), CpG islands (n = 27,443; g), and G-quadruplex
structures (n = 359,449; h). SNV profiles in proofreading-defective tumors mimic the damage profiles. i, j Metaprofiles across 848,350 Alu (i) and
2,533 LINE elements (j). SNV rates in proofreading-defective tumors are reduced compared with damage profiles
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whereas above we observed high levels of damage in
Alus and LINEs, there appears to be increased safekeep-
ing, leading to lower levels of C-to-A mutations. This
pattern is lost in the control tumors.

Discussion
Our results demonstrate the feasibility of measuring
AP-sites as a marker of oxidative damage and its first
repair intermediate across a genome at ~ 250-bp reso-
lution and high specificity. Damage is strongly reduced in
regions of high GC content, which also depends on DNA
accessibility. Previous measurements of oxidative damage
using antibodies for 8-oxoG agree with the accumulation
of oxidative damage in open, early replicating DNA [38].
Other studies describe oxidative damage accumulation in
the nuclear periphery and gene deserts [39] as well as in
certain promoters [35, 36]. Addressing the more persistent
AP-sites, we find open DNA increasingly damaged at the
100-kb scale. However, unprocessed 8-oxoG accumulates
at potential DNA secondary structures, such as
G-quadruplexes, telomeres, and in certain simple repeats.
The promoters identified to accumulate 8-oxoG using
candidate gene approaches, and peak calling [35, 36]
largely contains such predicted secondary structures, e.g.,
the mouse VEGF promoter, which Pastukh et al. charac-
terized during hypoxia [35], showing regulation through a
mechanism involving 8-oxoG accumulation at its G4
structure [79]. Apart from these exceptional genes, there
is no evidence that promoters in general show 8-oxoG ac-
cumulation. On the contrary, in yeast, Wu et al. [37]
showed generally reduced 8-oxoG levels in promoters. For
AP-sites, we describe a GC content-dependent reduction
of oxidative damage levels, a pattern that does not change
upon additional OGG1 treatment. Similar profiles for me-
thyl methane sulfonate (MMS) induced methyl adducts,
and their resulting AP-sites in yeast suggest a mechanistic
basis in increased base excision repair activity at pro-
moters [55]. Consequently, promoters and other high GC
content DNA are likely reduced in AP-sites rather
through a mechanism of increased repair activity than
protection from damage impact. Protection of such region
from Signature 17-derived mutations also supports a
mechanistic interpretation that focuses on DNA repair
preferences.
Exons also showed a striking protection from AP-sites,

with a strong contrast to introns. This protection is
equally not transcription, but GC content dependent. One
might speculate that the GC content itself may be in-
volved in either protecting the relevant genomic regions
or directing repair. The difference between exons and Alu
retrotransposons is therefore of particular interest.
Although equal in size and GC content, they display
distinctly different AP-site patterns, exons being protected
and Alus accumulating large amounts of damage.

Therefore, the biochemical determinant differentiating be-
tween exons and Alus is likely to be found in epigenetic
mechanisms, such as exon-associated histone marks, e.g.,
H3K36me3 or through direct interaction with RNA
processing or splicing, as it is increasingly suggested for
several mechanisms of DNA repair [72, 80].
In addition to the considerable feature-dependent vari-

ability in damage rates, we are able to relate them dir-
ectly to patterns of SNV occurrences in cancer genomes.
At the 100-kb scale, euchromatin has increased damage
levels, yet fewer SNVs. Euchromatic DNA is known to
be replicated more accurately due to increased postrepli-
cative mismatch repair [81, 82]. In addition, one could
speculate that exposure to oxygen radicals, but also bet-
ter accessibility for repair machinery, may lead to this
discrepancy [81]. At the 10-kb to 300-bp resolution, we
find reduced damage levels in functional elements such
as coding sequences, promoters, and transcription factor
binding sites. The heterogeneity likely results from
changes in the balance of damage susceptibility and
repair rates at different genomic regions.
Locus-specific oxidative damage is distinct from

damage types repaired by other pathways such as nu-
cleotide excision repair (NER). For instance, AP-site
levels are seemingly independent of gene expression,
whereas nucleotide excision repair can be coupled to
transcription [83]. Moreover, for NER, Sabarinathan
and Perera reported UV-dependent mutation hot
spots around transcription factor binding sites ex-
plained by hindered access of the repair machinery.
For AP-sites, we observe the opposite: protection of
the same regions. Such hot spots are probably pre-
vented through partial inaccessibility of the DNA to
oxygen radicals, which is not the case for UV light.
Alternatively, increased repair activity in these regions
may lead to a reduction of oxidative damage levels.
The mechanistic basis of how genomic features are
identified for protection still remains elusive. We find
that a complex interaction of sequence content, DNA
accessibility, protein binding, exon recognition, and
chromatin architecture modulates protective effects.
Intriguingly, large amounts of damage accumulate in

LINEs and Alus. DNA damage accumulation at these
sites would suggest not only effects on mutagenesis, but
also on silencing of these transposable elements [59–61].
Notably, an epigenetic function in hypoxia-induced gene
expression at G4 structures has been suggested for
8-oxoG [35, 79]. At these sites and other potential
non-B-DNA structures, we detected elevated signals in
the OGG1-enriched samples, confirming the in vivo ac-
cumulation of 8-oxoG [35] and suggesting that
8-oxoG-processing is impaired. It is interesting to specu-
late that these sites may have acquired a regulatory func-
tion beyond accumulating mutations.
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In conclusion, we have established a robust method to
measure AP-sites, and indirectly 8-oxoG together with
AP-sites, in a genome-wide manner. With minor modifi-
cations, it will be suitable for detecting any base modifi-
cation that can be excised with a specific glycohydrolase.
Identifying the pathways that lead to selective repair
fidelity and protection of functional elements will not
only provide insights into basic mutagenesis but will also
allow us to identify any regulatory characteristics of
8-oxoG and AP-sites as epigenetic marks.

Methods
Cell culture and X-ray treatment
HepG2 cells were chosen for these experiments on the
basis of the availability of additional data from the EN-
CODE project. In addition, HepG2 cells are preferentially
used for DNA damaging compounds that require enzym-
atic activation (e.g. aflatoxin), which may allow compari-
son of pathways and damage types in later studies.
HepG2 cells were cultivated at 37 °C and 5% CO2 in

Dulbecco’s modified Eagle medium (DMEM; Invitrogen)
supplemented with 1% essential amino acids, 1% pyru-
vate, 2% penicillin/streptavidin, and 10% heat-inactivated
fetal bovine serum (FBS). Approximately 1 × 106 cells
were exposed to 6 Gy X-ray using a SOFTEX M-150WE
in triplicates. Triplicate samples of untreated control
cells were processed in parallel, excluding irradiation.
Cells were harvested 30 min post-treatment.
Successful treatment was confirmed using immunocyto-

chemical staining for γH2AX. Cells were fixed in 2% for-
malin in phosphate-buffered saline pH 7.2 (PBS). Blocking
and permeabilization were performed with 0.2% fish skin
gelatin, 0.5% bovine serum albumin (BSA), and 0.5%
Triton X-100 in PBS. Staining for γH2AX was done with a
mouse monoclonal antibody (Millipore #05 636) in 1:2000
dilution and stained with a FITC-coupled secondary anti-
body. Nuclear staining with DAPI was included in the
mounting medium (ProLong Gold Antifade Mountant,
ThermoFisher, catalog number P36931). Images were
taken with an Olympus FV1000 microscope.

In vitro pulldown of damaged oligonucleotides
Oligonucleotides with defined damage sites were used to
determine the efficiency of the pulldown in vitro. The
sequence was adapted from the 59mer used by Guibourt
et al. [35] with additional M13 primer binding sites
(Additional file 2: Table S1).
Oligonucleotides were hybridized at a concentration of

50 μM for 2 min at 94 °C and gradually cooled to room
temperature. Ten picomoles of the double-stranded
8-oxoG-containing oligonucleotide was enzymatically
digested with one unit recombinant OGG1 (New England
Biolabs, catalog number M0241L) in New England Biolabs
(NEB)-buffer 2 and bovine serum albumin (BSA) and

simultaneously tagged with biotin using 5 mM Aldehyde
Reactive Probe [42] (ARP; Life Technologies, catalog num-
ber A10550) for 2 h at 37 °C. The control oligonucleotide
with guanine was tagged with biotin using 5 mM ARP in
TE-buffer containing 10 mM Tris and 1 mM EDTA, pH8.
Samples were purified using a ChargeSwitch PCR
Clean-up Kit (Invitrogen, catalog number CS12000).
Half of the sample (up to 5 pmol) was saved as input.

The other half was processed for pulldown using 5 μl
MyOne Dynabeads (Life Technologies, catalog number
65601). Beads were washed three times with 1 M NaCl in
TE-buffer and re-suspended in 2 M NaCl in TE-buffer
and then added to the equal volume of oligonucleotide
solution. The pulldown was performed for 10 h at room
temperature. The beads were washed three times with
1 M NaCl in TE-buffer. To release the DNA from the
beads, the beads were incubated in 95% formamide and
10 mM EDTA for 10 min at 65 °C and subsequently
purified using the ChargeSwitch PCR Clean-up Kit. Two
percent of the pulldown was used as template for qPCR.
qPCR was performed in 25-μl reactions using a Biorad
CFX96 Real-Time System with 2× Maxima SYBR Master-
mix (ThermoFisher, K0221) and 0.3 μM primers. Of the
saved input, 1% was used as template for qPCR.
Recovery of input was calculated as 2−ΔCT with the dif-

ferential between pulldown and input. The data were
subsequently normalized to the guanine-oligonucleotide
as it represents the background pulldown efficiency in-
cluding background from spontaneous AP-sites that pre-
sumably arise as a result of the heating step used to
anneal the oligonucleotides.

AP-site colorimetric measurement and AP-Seq
Total genomic DNA was extracted using a Blood and
Tissue Kit (Qiagen, catalog number 69506), and genomic
DNA was kept on ice during the process. Antioxidants
were not applied in this experiment to avoid artifacts
through sequence-specific effects. Since treated samples
and the untreated control are exposed to the same
technical artifacts from sample processing, these should
be accounted for in the data analysis. 5.7 μg of genomic
DNA was tagged with biotin using 5 mM Aldehyde
Reactive Probe [42] (ARP; Life Technologies, catalog
number A10550) in phosphate-buffered saline (PBS) for
2 h at 37 °C. Genomic DNA was then purified using
AMPure beads (Agencourt, catalog number A63882)
with 1.8× bead solution and 2× 70% ethanol washing;
beads were not allowed to dry to prevent DNA from
sticking.
Colorimetric measurement of AP-sites was performed

using a commercial kit (abcam, catalog number
ab65353) following the manufacturer’s protocol starting
from the DNA binding step with 60 μl and 0.1 μg/ml.
Optical density at 650 nm was normalized using the
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standard curve of defined damage sites. From the result-
ing values, the log2 fold difference to the control mean
was calculated and depicted as mean and standard error
of the mean. These data were not used for normalization
purposes of the sequencing experiments due to the
general semi-quantitative nature of this method.
For AP-Seq, biotinylated DNA was fractionated using

a Covaris fractionator in 130 μl for a mean fragment
length of 300 bp. After separating 30 μl for sequencing
as the input sample, the remaining DNA was used for
biotin-streptavidin pulldown, using MyOne Dynabeads
(Life Technologies, catalog number 65601). One hun-
dred twenty microliters of beads (10 μl per sample) were
washed three times with 1 ml 1 M NaCl in Tris-EDTA
buffer (TE-buffer) and re-suspended in 100 μl 2 M NaCl
in TE and then added to 100 μl of the sonicated DNA.
Samples were rotated at room temperature for 10 h.
Subsequently, the beads were washed three times with
1 M NaCl in TE and finally re-suspended in 50 μl TE
for library preparation.
For the in vitro OGG1-enrichment (OGG1-AP-Seq),

10 μg of genomic DNA was digested with recombinant
OGG1 (New England Biolabs, catalog number M0241L).
0.1 μg enzyme was taken for 1 μg of genomic DNA in
New England Biolabs (NEB)-buffer 2 and bovine serum
albumin (BSA) for 1 h, 37 °C. Such conditions for the
enzymatic digest should account for sequence
content-dependent differences in enzyme activity as
described by Sassa et al. [52]. Digested DNA was subse-
quently purified using AMPure beads as described
above. The DNA was subsequently tagged with ARP as
described above.

Library preparation and sequencing
Both the damage-enriched and input DNA were in vitro
repaired using PreCR (NEB catalog number M0309L).
The input DNA and supernatant of the pulldown were
purified using AMPure beads. The purified pulldown was
recombined with the beads, and library preparation was
performed on the re-pooled sample containing the super-
natant and the beads. A 125-bp paired-end ChIP-Seq li-
brary preparation kit (KAPA Biosystems catalog number
KK8504) was used and sequencing performed using an
Illumina HiSeq 2000 on first a rapid and then a
high-output run (catalog number FC-401-4002). The
resulting data were subsequently combined.

Read processing library normalization and damage
quantification
Unless stated, data processing was performed using R
3.4.0 and Bioconductor 3.5.
The quality of damage-enriched AP-seq samples (n=12)

and corresponding input samples were checked using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/);

the quality was sufficient that no further filtering was required
before alignment. The reads were mapped to the reference
human genome (version hg19) using the Bowtie2 algorithm
(http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) [84]
with standard settings, allowing for two mismatches and ran-
dom assignment of non-uniquely mapping reads. Mapping
statistics are depicted in Fig. 3a. To confirm the robustness of
key results, analyses were repeated excluding read duplicates
and reads below mapping quality 10 (reads were filtered for
mapping quality using SAMtools; http://www.htslib.org [85]).
Data were visualized with the Integrative Genomics Viewer
version 2.3.92 (http://software.broadinstitute.org/software/igv/)
[86].
Paired reads were imported into R using the “Genomi-

cAlignments” and “rtracklayer” [87] packages. Paired reads
mapping more than 1-kb apart were discarded. The result-
ing median fragment length turned out to be < 250bp for
AP-Seq (+input) and > 250bp for OGG1-AP-Seq (+input)
samples (see Additional file 1: Figure S3B), despite the
samples being processed together. Filters were applied to
assess read duplication with Picard tools (https://broadin-
stitute.github.io/picard/), reads mapping to the Broad Insti-
tute blacklist regions (https://personal.broadinstitute.org/
anshul/projects/encode/rawdata/blacklists/wgEncodeHg19
ConsensusSignalArtifactRegions.bed.gz) [88], and whether
reads overlap with repeats annotated in the UCSC Repeat-
Masker track from the UCSC Table Browser
(rrmsk_hg19.bed). The main analysis was performed with-
out applying these filters, but the robustness of key results
was confirmed by repeating analyses with the filters.
Inter-library normalization was performed using only

genomic areas of low damage. It was necessary to consider
that increased exposure to DNA damage leads to increased
library sizes. A global scaling factor was calculated as the
mean read coverage in a low-damage subset (10%) of 100-kb
bins, which were identified by their read coverage as the low-
est decile of 100-kb bins over the mean of all samples.
Relative Enrichment of DNA damage was assessed

through the normalised log2 fold change of the enriched
sample over input (termed Relative Enrichment). This
should account for biases derived from DNA amounts
after genomic DNA extraction, as well as GC content
biases from sequencing, which would affect the pull-down
samples and inputs alike. Analyses were restricted to chro-
mosomes 1 to 22 and X, except for the 100-kb damage dis-
tribution map which includes the Y chromosome (Fig. 1b).
All analyses were performed using the average Relative

Enrichment in appropriate bin sizes tiled across the gen-
ome or covering genomic elements. For a large-scale
overview, a bin size of 100-kb was chosen for compar-
ability with related studies [28, 29]. Genome browser im-
ages were generated using absolute read counts pooled
over replicates. Peak calling was generally not performed
as it was deemed inappropriate for this type of data.
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Each treatment condition was independently used for
relative comparison within the samples. Lack of absolute
quantification and subtle differences in fragment length
suggest that instead of using primary AP-sites as input for
OGG1-enriched AP-sites, it is more appropriate to show
them side-by-side for comparison for those analyses that
suggest subtle to no differences in distribution patterns.
Sample-to-sample comparisons were limited to those ana-
lyses that show distinct differences in distribution patterns,
such as G-quadruplexes, simple repeats, and telomeres.
Correlation of biological replicates was assessed using

Pearson correlation in 100-kb resolution (Additional file 1:
Figure S3).

Analysis on local oxidative damage distribution
The karyogram map was compiled using the mean of
the replicates at 100-kb resolution with “ggbio” [89] kar-
yogram plot fixing the color scale to a Relative Enrich-
ment of − 1 to 1. Enrichment over chromosomes was
also depicted with 100-kb resolution for the mean of the
replicates with shades depicting the standard error of
the mean of triplicates. For illustration purposes, data
were smoothed with a Gaussian smooth over 10 bins,
using the smth.gaussian function of the “smoother”
package. Correlations at 100-kb resolution were per-
formed using Spearman correlation. Fine-resolution im-
ages were depicted using the IGV browser without any
additional smoothing applied.

Epigenome and feature analysis
Genome-wide feature sets were obtained from the UCSC
Genome Browser. Chromatin features for HepG2 cells
were retrieved from the data repository generated in the
context of the ENCODE consortium and obtained through
https://www.encodeproject.org/ [88]. Where applicable,
datasets were pooled. Accession numbers are listed below.
Transcript density was calculated through the genome

coverage with any one transcript as defined by UCSC.
Distance to telomeres and centromeres was calculated as
the absolute base pair distance to annotated telomeres
and centromeres.
Genomic and chromatin features were calculated as

mean values in 100-kb bins over the genome and clus-
tered using hierarchical clustering of Spearman’s correl-
ation coefficients. Features were then correlated (also
Spearman) to the individual DNA damage levels. Data
points represent the mean of the correlation coefficients
with the standard error of the mean over replicates.

GC content analysis
GC content analysis for quality control purposes was
performed with the Deeptools suite [90] using default
parameters. Visualization was performed in R using

ggplot2. The range for GC content bins was limited to
20–70% GC content.
GC content preference of DNA damage distribution

was assessed at 1-kb resolution. For each 1-kb bin in the
genome, GC content was calculated and rounded to the
closest percentage. Bins with more than 10% undefined
sequence were censored. For all bins falling into a particu-
lar percentage range, mean Relative Enrichment was cal-
culated with standard error of the mean for three
biological replicates. Averaging over the bins in each cat-
egory accounts for the lower numbers of bins with ex-
treme GC content. For display purposes, a Gaussian
smooth was applied reaching over 10% GC content range.

DNA damage distribution over gene profile
Metaprofiles over coding genes were compiled using the
UCSC transcript annotation. The mean was taken for differ-
ent elements of genes, which are comprised of a total of
26,860 transcripts. Gene elements were either centered
around an appropriate center point, in which case the mean
Relative Enrichment was calculated for each base pair in the
respective region. For gene elements of different sizes, the
mean over the gene element was taken. Independent of their
size, they were weighted as equal in subsequent analyses.
The metaprofile was then compiled with the different gene
elements in the following order: 48,838 promoters were cen-
tered around the transcriptional start site with 1-kb se-
quence in 5′ direction and 500 bp in 3′. 58,073 5′ UTRs,
214,919 exons, and 182,010 introns were addressed as a
scaled mean. In addition, exons and introns were addressed
through the exon-intron junction, both 5′ and in 3′ of the
exon ± 250 bp. Given the small sizes of exons, 250 bp par-
tially also contains following gene elements. The end of
genes is represented through the means of 28,590 3′ UTRs
and 43,736 transcription termination sites with 500 bp in 5′
direction and 1-kb in 3′. Twenty-two thousand four hun-
dred eighty intergenic regions were addressed as the mean
of each region. Shades represent the standard error of the
mean over biological replicates.
Mean GC content distribution was determined using

the same regions. Metaprofiles for GC content were
smoothed using a Gaussian smooth over 100 bp.

GC content- and transcription-dependent promoter, exon,
and Alu analysis
Gene transcription was assessed using RNA-Seq data
for HepG2 cells from the ENCODE consortium
(Additional file 2: Table S2). Replicates were pooled,
and RNA-Seq coverage was calculated for each
unique UCSC-defined transcript (n = 57,564), normal-
ized by the length of UTRs and exons. Promoters,
i.e., the transcriptional start sites ± 1 kb for each
transcript, were grouped into 11,058 silent promoters
and the remaining 46,506 into deciles of increased
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transcriptional use. In parallel, the mean GC content
for each promoter was calculated, which were then
also grouped into deciles based on their GC content.
Mean damage was assessed for each promoter in
these groups.
Analysis of damage in exons was restricted to exons

between 50 and 200 bp in size (n = 137,524) to avoid ar-
tifacts due to extreme sizes. RNA-Seq coverage and GC
content were determined for each exon separately.
Exons were then grouped into 48,706 silent exons and
the remaining 88,818 grouped into deciles of increased
exon expression. Equally, the exons were grouped into
deciles.
Alus were also analyzed for GC content dependence,

though not for expression, because instead of RNA-seq,
a method of nascent transcription would be required
for such an analysis. Alus were only considered when
between 270 and 330 bp in size and intragenic to avoid
artifacts through eu- and heterochromatic location.
These 201,582 Alus were then grouped into GC content
deciles and assessed for AP-site enrichment as de-
scribed above.
Whole transcripts were also considered to be analyzed

in a similar way. However, GC content of transcripts is
highly dependent on transcript length, exon, and Alu
density. Therefore, an analysis of the elements separately
was deemed more appropriate.

Retrotransposon analysis
Retrotransposon information was obtained from the
UCSC repeat masker. For repetitive sequences, there is a
risk of mapping issues and errors of annotation. There-
fore, retrotransposon analysis was limited to families of
these repeats, where location issues should not arise and
misestimation of total repeat numbers should largely be
balanced out through the pulldown vs. input compari-
son. Analyses for particular locations were restricted to
the shorter Alu repeats, where mapping issues should be
minimal, and the findings were confirmed by excluding
ambiguous mapping.
LINE elements were defined as belonging to LINE

element families of L1PA7 or newer and only consid-
ered if between 5.9 and 6.1-kb (n = 2533) in size. Alus
were considered when 270 to 330 bp in size (n =
848,350). Retrotransposons were anchored to their
start sites and addressed with flanking regions from
the start − 1 kb to + 7 kb for LINE elements and −
200 bp to + 500 bp for Alu elements. Metaprofiles
were compiled as the mean Relative Enrichment over
the respective region. GC content was assessed as the
mean GC content at the particular site and smoothed
using Gaussian smoothing in windows of 5% of fea-
ture length.

Transcription factor binding sites, CpG islands, and G-
quadruplex structure analysis
Transcription factor binding sites were obtained as
the consensus set from ENCODE (Additional file 2:
Table S2), which is cell line unspecific (n = 5,717,225).
HepG2 cell-specific CTCF binding sites (n = 48,671)
and DNase hypersensitivity sites (n = 192,735) were
obtained through ENCODE and UCSC, respectively
(Additional file 2: Table S2). G-quadruplex (G4) struc-
tures were obtained using the G4Hunter method [91],
utilizing directly the reference file QP37_hg19_ref.R-
Data provided with the associated R package (n =
359,446) with the exception of telomeric G4 struc-
tures with the center less than 500 bp away from the
chromosome end (n = 3). CpG islands were defined
through UCSC (n = 27,443). Features were considered
to be in a promoter, if they overlap with the region
of a transcriptional start site ± 1 kb. They were con-
sidered to overlap with DNase hypersensitivity only
when the feature itself overlaps with a DNase hyper-
sensitivity site. Transcription factor binding sites were
excluded, if located within 500 bp of the center of a
CTCF binding site. For metaprofiles, the centers of
the features were considered and mean Relative En-
richment of damage levels assessed relative to the
center point. For quantification of mean damage at a
given feature site, only the feature itself was ad-
dressed and quantified as the mean Relative Enrich-
ment over the region. GC content over transcription
factor binding sites was however calculated as the
mean over the region around the transcription factor
binding site (± 500 bp). Groups of features were sum-
marized using the median.

Telomere analysis
Due to expected mapping artifacts at telomeric repeats,
telomeres were addressed separately not using the
aligned sequence. Instead, TelomereHunter version
1.0.4. (https://www.dkfz.de/en/applied-bioinformatics/
telomerehunter/telomerehunter.html) [92] was used to
filter out reads that map to telomeric repeats. These
were reassigned to intratelomeric and subtelomeric re-
gions or other locations. Of these, only the intratelo-
meric repeats were considered. Normalization between
libraries was performed not within the TelomereHunter
package but separately with the global scaling factor as
described above using only genomic areas of low damage
accumulation. The global scaling factor was calculated
as the mean read coverage in a low-damage subset (10%)
of 100-kb bins, which were identified by their read
coverage as the lowest decile of 100-kb bins over the
mean of all samples. Mean Relative Enrichment between
biological replicates was calculated with the standard
error of the mean.
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Microsatellite analysis
Microsatellites were defined through the UCSC repeat
masker as the “Simple_repeat” class. For quantification
purposes, reverse complement repeat classes were com-
bined. Only microsatellite sequences that are represented
> 1000 times in the genome were considered. This leaves
39 repeat types, which represented by a total of 388,350
repeats. Since the damage assessment does not allow
strand specificity, repeats were pooled with their reverse
complement assigning both orientations to the alphabetic-
ally first repeat. Median Relative Enrichment of damage
was quantified over each microsatellite type.

Chromatin loop definition
Chromatin loop anchor definition was inspired by Canela
et al. [93] using the overlap of CTCF binding sites (n =
48,671) with RAD21 binding sites (n = 64,528). In
addition, we included SMC3 binding sites (n = 30,782).
Each binding site was defined by ChIP-seq in HepG2 cells
obtained from ENCODE (Additional file 2: Table S2).
CTCF sites are only considered, if they overlap with a
canonical CTCF motif (n = 33,692) as defined by the pack-
age “motifmatchr.” Loop anchors were centered and
oriented at the center of the motif but merged and recen-
tered, if closer than 500 bp apart. The resulting chromatin
loops (n = 18,242) were then oriented by the direction of
the CTCF motif. Coverage with the original ChiP-seq sig-
nal of the three components was assessed through mean
coverage profiles of the original coverage tracks from EN-
CODE (Additional file 2: Table S2). These data were not
normalized or corrected, as it was not deemed necessary
for the assessment of relative coverage. Damage distribu-
tion analysis around loop anchors was performed as
described in 8.12 using loop anchors ± 500 bp.

Chromatin loop insulation classification
Chromatin loops were assessed for their insulation prop-
erties regarding changes between open and closed chro-
matin inside and outside of the loop. As markers of
active and inactive chromatin, the log2 ratios of
H3K36me3 and H3K27me3 read coverage 10-kb outside
and inside the loop was determined. Their ratio was
used to assess the insulation properties. Based on the
distribution of this ratio, an otherwise arbitrary cut-off
of 1.2 was used to separate out those loops that display
clear changes from H3K36me3 to H3K27me3, i.e., “swap
OFF” (n = 1767), and those that change from H3K27me3
to H3K36 me3, i.e., “swap ON” (n = 2021). The
remaining loop anchors were then differentiated
dependent on whether H3K27me3 or HeK36me3 is the
dominant histone mark, determined on whether
log2(H3K27me3/H3K36me3)<2, defining loops in chro-
matin stated as “ON” (n = 3975) and loops > 2 stated as
“OFF” (n = 10,479). Chromatin loops defined as “OFF”

can therefore also be located in heterochromatin. Chro-
matin changes were confirmed by determining the mean
coverage distribution of the raw read coverage over the
defined groups.

Chromatin architecture-dependent oxidative damage
assessment
AP-seq enrichment was determined as described in 8.12.
in the region ± 10 kb from the loop anchor. For differen-
tial changes in damage levels, AP-seq Relative Enrich-
ment was determined and the differential of the 10-kb
inside and outside the loop. Statistical testing to deter-
mine the differential damage enrichment between the
“swap ON” and “swap OFF” group was performed with
the Wilcoxon ranked sum test.

Patient selection for mutation analysis
Data for mutations in cancer were obtained from the
Pan-cancer Analysis of Whole Genomes consortium
[70]. Contributions of mutational signatures were pro-
vided by PCAWG working group 7 [74].
The dataset is comprised of 2702 tumor-normal pairs for

39 cancer types. From this dataset, we obtained all data on
mutation rates and mutation signature contributions, as
well as clinical metadata. The analysis was restricted to
chromosomes 1 to 22 and X. It was focused on C-to-A and
T-to-G mutations as these are the major mutation types
derived from oxidative damage—C-to-A from oxidative
damage in the genome and T-to-G from incorporation of
oxidized nucleosides during replication. In addition, we in-
vestigated the mutation patterns for C-to-A mutations
under conditions of POLE proofreading-deficient tumors.
These mutations are suspected to arise in a yet unknown
proportion from mismatches with oxidatively damaged
DNA [71]. For control purposes on POLE proofreading-de-
ficient tumors, C-to-T mutations were included. Equally
prominent as C-to-A mutations, their underlying biology is
largely unclear but suspected to arise from bypass of uracil
and direct mispairing of C-A pairs [77, 78]. The involve-
ment of base excision repair in removal of uracils therefore
suggests partially overlapping biological mechanisms.
These mutation types include the respective reverse
complements G-to-T, A-to-C, and G-to-A, as the ana-
lysis is not performed strand specifically. Effects from
selection processes were not taken into consideration,
because the consequences from the average 2.9 driver
SNVs per tumor [94] on the mutation patterns should
be negligible.
Patients with oxidative damage-induced mutations were

separated based on the proportion contribution of Signa-
ture 18 to C-to-A mutations and by the contribution of
Signature 17 to T-to-G mutations. Patients were censored
that have a hypermutator phenotype (C-to-A > 100,000;
n = 9) or coding mutations in 8-oxoG or AP-site
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processing, i.e., whether mutations fall into the coding se-
quence of OGG1 (n = 7), APEX1 (n = 3), or FEN1 (n = 3).
Mutations were considered, if their effect determined by
the ensembl VEP tool (http://www.ensembl.org/Multi/
Tools/VEP) [95] identified them as missense variants, stop
codon gained, frameshift variants, or splice donor variant.
Copy number alterations were not considered. For infor-
mation of individual patients, see Additional file 2: Table
S2. In addition, patients were also censored based on doc-
umented smoking history or previous exposure to chemo-
therapy/radiotherapy. A total of 2401 samples were used
for analysis. They were grouped into Signature 18-based
groups of < 10% (n = 1398), 10 to 40% (n = 322), 40 to 60%
(n = 540), and > 60% (n = 141). Based in Signature 17, they
were grouped into < 10% (n = 2255), 10 to 25% (n = 78),
25 to 50% (n = 59), and > 50% (n = 9).
Patient samples with a polymerase epsilon proofread-

ing defect (n = 8) were determined through a hypermu-
tator phenotype (C-to-A > 100,000) with prominence of
Signature 10 confirmed as being linked to coding muta-
tions in Pol E. In total, these samples contain 3,436,531
C-to-A mutations. For information of individual pa-
tients, see Additional file 2: Table S3.

GC content preferences of mutation rates
For each 1-kb bin in the genome, GC content was calcu-
lated and rounded to the closest percentage. Bins with
more than 10% undefined sequence were censored. Muta-
tions falling into bins of 50% GC content or higher were
calculated as proportion of the total C-to-A and T-to-G
mutation counts (drawing the cut-off at 60% GC content
gives equivalent results). Assuming equal distribution
dependent exclusively on base content, a total of 15% of
C-to-A and 8% of T-to-G mutations would be expected to
fall into such high GC content areas of the genome. How-
ever, in the case of C-to-A mutations, even in the control
tumor samples with Signature 18 proportion < 0.1, only a
median of 9% C-to-A mutations fall into high GC content.
The cut-off was determined based on the observed
AP-site distribution patterns. Statistic testing was per-
formed relative to the control groups of < 0.1 signature
contribution using the Wilcoxon ranked sum test.
High GC content DNA is associated with replication

timing. Therefore, the genome was separated into early,
intermediate, and late replicating DNA, based on
Repli-Seq data on HepG2 cells (see Additional file 2:
Table S2). One-kilobyte bins were separated into tertiles
of replication timing and mutation rates in high GC
content DNA assessed separately within these groups.
High GC content DNA is overrepresented in early repli-
cating DNA (807 Mb) vs. intermediate (78 Mb) and late
replicating 1-kb bins (24 Mb). To account for this bias,
GC content-dependent mutation rates were assessed

separately in all three groups for the mutation-rich
POLE proofreading-deficient tumor samples.

Genomic features analysis
Metaprofiles over genomic features were calculated for
the features with the same selection strategy as described
above. For this, mutations of each mutation type were
pooled for each patient group. Mean relative mutation
rates over features were calculated as relative C-to-A or
C-to-T mutation density normalized to 1,000,000 C-to-A
or C-to-T mutations per patient group. The mean over
the features was normalized for sequence content of the
particular location by dividing with a factor of the local
GC content divided by the average of 41%. For display
purposes, data were smoothed using a Gaussian smooth
spreading over 100 bp for the gene body profile, Alus,
protein-binding sites, CpG islands, and G4 structures.
LINE elements were smoothed using Gaussian smoothing
over 200 bp to account for the increased noise originating
from the lower frequency of this particular feature.

Reanalysis of the study by Ding et al.
Data processing
Raw data were obtained from NCBI BioProject accession
number PRJNA359996 and quality controlled using
FastQC (https://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc/). Reads were aligned to the mouse genome
(mm10) using Bowtie2 with default parameters. Because
differences in library size can affect the downstream ana-
lyses, libraries were also subsampled with samtools [85] to
42,908,708 read pairs, the library size of mapped reads of
the wildtype (WT) sample.
For easier reproducibility, analyses on GC bias, gene

metaprofiles, and the generation of genome browser
tracks was performed with the Deeptools suite [90].

GC sequencing bias
GC content was assessed with Deeptools on the size-cor-
rected libraries using default parameters. Visualization was
performed in R using ggplot2. The range for GC content
bins was limited to 20–70% GC content.

Gene profile and genome browser tracks
Gene profiles were produced with the Deeptools suite and
default normalization settings on the size-corrected librar-
ies. Gene bodies were scaled to 5-kb and supplemented
with 3-kb from the transcript start and end. Bigwig files
were produced with 100-bp binning and visualized with
the Integrative Genomics Viewer version 2.3.92 (http://
software.broadinstitute.org/software/igv/) [86]. The repeat
masker and CpG island tracks were obtained from the
UCSC genome browser.
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Peak calling and processing
Peak calling was performed using MACS2 (https://github.
com/taoliu/MACS/) with default settings, both on the ori-
ginal library size and subsampled to 42,908,708 read pairs.
Peaks were filtered for > 3-fold, > 4-fold, and > 5-fold en-
richment, for which the numbers were comparable with
Ding et al. both for the approaches on the full library sizes
and with subsampled libraries. Peaks were further proc-
essed using the “GenomicRanges” package in R. Genomic
annotation of peaks was determined using the “ChIPSee-
ker” package [96] with the UCSC mm10 transcript library.
Repeat annotation was obtained from the UCSC repeat
masker. Simple repeats were combined with their reverse
complement and assigned alphabetically.

Trinucleotide distributions over the genome
Trinucleotide frequencies were assessed through assign-
ment of each 1-kb bin in the hg19 genome to a GC con-
tent category. Reverse complement trinucleotides were
combined, and the proportion of each of the 32 se-
quences was calculated separately for each GC content
category. In addition, GC contents above 50% were com-
bined. To account for total frequencies of trinucleotides
throughout the genome, it was assessed which propor-
tion of the total trinucleotide counts falls into GC con-
tent of > 50%, which accounts for 10.9% of the genome.
Trinucleotides that underlie the mutations associated

with mutational signatures for a specific mutation type
were proportionally added to account for the fingerprint of
the signature. It was calculated which proportion of these
mutations fall into particular GC content category. This
calculation is based on sequence content alone and does
not account for epigenetic confounders, e.g., high GC con-
tent DNA is enriched in euchromatic domains and early
replicating DNA, which generally show lower mutation
rates than heterochromatin. We used these data as controls
to highlight possible biases, such as the probability to call
Signatures dependent on where the mutations locate. These
data were not used to correct mutation data, since the se-
quence content is expected to impact the underlying biol-
ogy, such as damage impact and repair efficiency. A
trinucleotide-based sequence content correction was there-
fore considered to compromise the comparability between
the data on mutations and DNA damage distribution. Con-
sequently, trinucleotide-based data correction was not ap-
plied in the context of this paper.
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www.encodeproject.org/files/ENCFF000DPM, https://www.encodeproject.org/
files/ENCFF000DPN, https://www.encodeproject.org/files/ENCFF000DPO
Replication timing:
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeUwRepliSeq/wgEncodeUwRepliSeqHepg2WaveSignalRep1.bigWig
Mappability:
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
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Transcription factor binding sites:
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https://www.encodeproject.org/files/ENCFF661OYF
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https://www.encodeproject.org/files/ENCFF002CUU
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RAD21 binding sites:
https://www.encodeproject.org/files/ENCFF379VSH
RAD21:
https://www.encodeproject.org/files/ENCFF528KWW, https://
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DNase hypersensitivity sites:
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