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Splicing heterogeneity: separating signal

from noise

Yihan Wan and Daniel R. Larson”

Abstract

Single-cell analyses have revealed a tremendous
variety among cells in the abundance and chemical
composition of RNA. Much of this heterogeneity is
due to alternative splicing by the spliceosome. Little is
known about how many of the resulting isoforms are
biologically functional or just provide noise with little
to no impact. The dynamic nature of the spliceosome
provides numerous opportunities for regulation but is
also the source of stochastic fluctuations. We discuss
possible origins  of splicing  stochasticity, the
experimental approaches for studying heterogeneity
in isoforms, and the potential biological significance
of noisy splicing in development and disease.

Introduction

In recent years, there has been substantial progress in the
development of methodologies to interrogate gene expres-
sion in single cells. Single-cell imaging has historically
been the workhorse technology for such studies, but appli-
cations such as single-cell sequencing have rapidly ad-
vanced, with recent publications drawing conclusions
from tens of thousands of individual cells [1-4]. The pic-
ture that emerges from these studies is that gene expres-
sion varies from cell to cell. These differences can be both
genetic and non-genetic, and they can be stable or dy-
namic. Differences can arise from programmed
specialization during development or through random
processes that occur in the cell. Even at the mRNA level,
abundance, sequence, and chemical modifications can
vary among transcripts that are produced from the same
sequence of DNA. Making sense of this variation has be-
come an immense experimental and theoretical challenge.
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The process of RNA synthesis leads to variation in
mRNA abundance, which has been studied extensively
[5]. However, RNA processing, specifically pre-mRNA
splicing, has the potential to be an equally important
source of variability in gene expression. Since the first
discovery of splicing 40 years ago [6—8], accumulating
knowledge about the spliceosome’s assembly and enzym-
atic mechanism, about the process of splice site selec-
tion, and on the coupling with transcription depicts a
complex, multi-step, dynamic model involving a massive
molecular machine. Each of these steps in splicing is
subject to regulation, leading to the amazing diversity of
alternatively spliced transcripts in virtually every organ-
ism in which RNA splicing is present. Each of these
steps is, however, also subject to random fluctuations.
Like all reactions that occur at the molecular level and
rely on small numbers of molecules, stochastic (i.e., ran-
dom) effects are the rule rather than the exception. This
phenomenon was evident in the earliest observations of
alternative splicing using chromatin spreads of the
Drosophila chorion gene. In the same transcription unit,
two alternative splicing isoforms were observed at the
single-molecule level [9]. Since then, the proportion of
transcripts that show alternative splicing has asymptotic-
ally approached 100%. From ‘a list of genes’ in the 1980s
[10], to “74% of all genes’ inferred from expressed se-
quence tag (EST)-genomic alignments and microarrays
[11, 12], to ‘98-100% of multi-exonic genes’ in the
next-generation sequencing era [13-16]. Single-cell se-
quencing has now revealed that splicing variability exists
among tissues and between individuals [17-20].

Which transcripts are functional? How do we detect
meaningful changes not only in alternative splicing but
also in RNA editing or alternative poly-adenylation? And
what experimental and conceptual advances will be
needed for the next stage of research? In this special
issue, new techniques and datasets are presented that
are at the forefront of RNA biology. Here, we focus on
the current understanding of variability in RNA process-
ing, mostly on splicing. We hope to frame the following
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questions. 1) Where does splicing stochasticity come
from? 2) How do we measure splicing variability? 3)
What is the biological significance of splicing
heterogeneity?

Noise in splicing: where does it come from?

To understand the source of stochastic variability, a com-
parison with transcription is illuminating. One major
source of wvariability in mRNA abundance is the
time-varying activity of RNA synthesis called transcrip-
tional ‘bursting’. Periods of active RNA synthesis are
punctuated by long inactive periods [21-23]. The proper-
ties of the bursts are determined by cis-acting elements
such as enhancers [24—27] and promoters [28—30], and by
trans-acting activators [31, 32] and chromatin remodelers
[33-35]. In particular, the initiation of RNA synthesis is
the major source of variability, with downstream processes
such as elongation, cleavage, release, and termination con-
tributing little. Notably, enhanceosomes and pre-initiation
complexes assemble and dissemble within a timescale of
seconds [36, 37], and a ‘successful’ event results in the pro-
duction of a transcript with low efficiency (from about
10% of complexes formed) [38—40]. Similarly, splicing is
also a dynamic process that relies on both cis-acting ele-
ments and trams-acting modulators [41]. The assembly
and disassembly of the spliceosome E complex occurs at a
timescale of seconds to minutes [42]. The spliceosome is
also a single turnover enzyme that disassembles after the
completion of each splicing event (Fig. 1). Thus, the spli-
ceosome would need to assemble and disassemble dozens
of times (or more) during the production of any one tran-
script. The assembly of a spliceosome is determined by in-
formation residing in the consensus branch point and 5°,
3" splice sites, but it can be affected by multiple levels of
regulation, such as activities of silencer or enhancer
sequences, the binding of SR proteins or heteroge-
neous nuclear ribonucleoproteins (hnRNPs), transcrip-
tional kinetics, nucleosome positioning, and DNA
template or chromatin modifications [15, 43]. When
attempting to understand splicing noise, we can begin
by looking at the composition and kinetics of the
splicing machinery (Fig. 1).

For each nascent RNA molecule generated from tran-
scription, the spliceosome needs to first recognize the
correct splice sites, then assemble to complete intron re-
moval and exon ligation, and then disassemble. Intron
and exon definition is the key step in the initiation of
spliceosome assembly. The 5 splice site consensus
AG|GURAGU is present at the exon—intron junction.
The 15-nucleotide 3" splice site Y;(NCAGI|G is present
at the intron—exon junction. At a variable distance up-
stream of the 3" splice site (10-50 nucleotides (nt) for
human transcripts) is the branch point consensus
YNYURAY [44-47]. The dinucleotide pair GU-AG is
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present in over 98% of all intron sequences that are re-
moved by the spliceosome, but variations are found in
neighboring bases [48, 49] (Fig. 1c).

Randomness is generated by several aspects of this
splice-site-recognition step. First, the sequence informa-
tion from the nascent RNA transcripts is ambiguous and
highly degenerate, especially in mammals. The intron or
exon definition step requires spliceosomes to read the
information from more than ~ 30 bases accurately [50].
This recognition mostly relies on the base-pairing be-
tween Ul and U2 small nuclear RNAs (snRNAs) and the
nascent RNA, but RNA modifications and bulged nucle-
otides make this base-pairing highly flexible [49, 51]. Se-
quence alone is not sufficient allow the accurate
identification of splicing boundaries, even for short in-
trons (<134 bp) in human transcripts [52]. Moreover,
many sequences in the mammalian genome match the
consensus but are not recognized as real splice sites and
the mechanism behind this discrimination is poorly
understood. Second, mutations and single nucleotide
variants (SN'Vs) in the template sequence generate mov-
ing targets for the spliceosome. Millions of genetic vari-
ants in the human genome have been uncovered
through the 1000 Genomes project [53]. Multiple
methods, such as machine learning [54], splicing quanti-
tative trait loci (QTL) [55], and integrative genome-wide
association studies (iIGWAS) [56] have revealed that
SNVs are associated with alternative splicing. These
SNVs could change the splice sites directly or could alter
a splicing regulatory sequence. Furthermore, the long in-
trons in human transcripts also provide ample muta-
tional opportunities for the creation of new or weak
splice sites and for the generation of new exons (exoni-
zation) [20, 57]. Third, this ‘reading and recognition’
process is coordinated by splicing enhancer and silencer
sequences through recruitment of SR proteins and
hnRNPs [58]. Binding motifs for SR proteins and hnRNPs
can be found in the majority of exons and introns [59, 60].
The role of RNA-binding proteins (RBP) can be synergic
or competitive. The output of a splicing event will be af-
fected by the motif sequence of the pre-mRNA and the
array of RBP concentrations in the cell.

The complexity in the template pre-mRNA brings a
primary source of stochasticity, even before considering
the assembly of the spliceosome itself. The spliceosome
consists of hundreds of proteins and multiple snRNAs.
Initially, splicing ‘commitment’ was thought to occur
once the intron—exon boundary has been defined [61].
Recent studies have revealed, however, that the spliceo-
some is a highly flexible and reversible enzyme. Spliceo-
some assembly can be initiated by either a Ul- or a
U2-first pathway [62]. After assembly initiation, the spli-
ceosome can switch between different catalytic confor-
mations that favor forward or reverse progress [41]. The
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Fig. 1 (See legend on next page.)
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Fig. 1 Stochastic events in splicing. The spliceosome is a single-turnover enzyme that assembles and disassembles for each splicing event. Splicing
consists of a complex sequence of steps, and each step represents several biochemical reactions. These reactions involve binding and dissociation
events, which include random variables at the molecular level. a Schematic representation of the steps associated with mRNA production: transition of
the promoter between a repressed and an active state, transcription, co-transcriptional or post-transcriptional splicing to create heterogenous isoforms
and mRNA degradation. b Kinetic scheme for co-transcriptional spliceosome assembly. The formation of the catalytically competent spliceosome starts
with splice site recognition, which is a highly dynamic process. Although the in vivo measurements of snRNP kinetics are still missing, in vitro
experiments provide evidence for the reversible binding of almost all of the major subcomplexes to the nascent RNA (e.g.,, the pairing between U1
and 5'ss, U2 and branchpoint, the binding of tri-snRNP and NTC are in a kinetic range of k= 0.13-0.35 min™ ). The binding dynamics between the
U2AF complex and poly-pyrimidine tract and 3'ss are still poorly understood. The binding of heterogeneous nuclear ribonucleoproteins (hnRNPs) and
SR proteins also regulates splicing dynamics. Their kinetics need to be further explored. ¢ Variability of splice sites in the human genome. (i) Consensus
motifs of the U2-type 3 splice sites with AG at the border. (i) Non-canonical motifs of U2-type 3" splice sites with dinucleotides other than AG at the
border. (iii) Consensus motifs of the U1-type 5' splice sites with GT at the border. (iv) Non-canonical motifs of U1-type 5 splice sites with dinucleotides
other than GT at the border. NTC NineTeen complex, Pol Il RNA polymerase II, snRNP small nuclear ribonucleoprotein

splicing catalytic process is iso-energetic and driven by
numerous ATPases, resulting in two transesterification
processes that are both reversible in the proper ionic
environment [63, 64]. Recent single-molecule research
on spliceosome assembly has revealed that almost all of
the steps in splicing are reversible [65, 66]. In the con-
text of a highly flexible and reversible spliceosome as-
sembly process, the alternative splicing decision may be
the result of kinetic competition between different spli-
ceosome assembly pathways.

Years of work on transcription have solidified the
view that heterogeneity is a dynamic phenomenon: a
gene may appear to be ‘off; only to be expressed again
minutes or hours later. Likewise, understanding splicing
stochasticity requires an understanding of splicing dy-
namics. Splicing can be viewed as a process that is af-
fected by multiple kinetic variables: 1) transcription
kinetics affecting the generation of nascent RNAs; 2)
the diffusion kinetics and assembly dynamics of the
macromolecules involved in recognizing splice sites; 3)
the spliceosome catalytic dynamics. Determining these
kinetic parameters in vivo and how they work in con-
cert are important for understanding splicing stochasti-
city. To address this question, a simple starting point is
the time-lapse measurement of the splicing output—the
generated mRNA isoforms. Population-level measure-
ments that are based on time-resolved nascent-RNA se-
quencing and quantitative real-time PCR (RT-PCR)
elucidate average splicing times ranging from 5 to
14 min in mammalian cells and of less than 5 min in
yeast [67—69]. Nevertheless, the average measurement
of a cell population may not reflect the behaviors of in-
dividual cells. Live-cell fluorescence microscopy based
on a set of reporter genes labeled by MS2 and/or PP7
stem loops (Fig. 2a) probes the splicing kinetics at the
single-cell level and reveals variable timescales (for ex-
ample, from 20 s to many minutes) [70-72].
Single-molecule intron tracking (SMIT) combined with
long-read sequencing showed that splicing can take
place before the RNA polymerase transcribes even a

few dozen nucleotides downstream of the 3" splice site
(i.e., a few seconds given the polymerase transcribing
rate) in yeast [73].

One explanation for the lack of consensus across the
various methods used might be the difficulties in detecting
the whole dynamic range of splicing. For example, if spli-
cing time is exponentially distributed over a broad range
(Fig. 2a, b), the measured time will depend on the time
resolution of the method. Imaging or pulse-chase methods
might overestimate the duration of very short events or
might underestimate the duration of extremely long
events. Likewise, for steady-state biochemical methods,
the inferred dynamic parameters rely on the assumption
that all intermediates are identified and analyzed, whether
they are on chromatin or in the nucleoplasm.

Above all, the stochasticity of splicing could result in
variability in both splice site selection and splicing kinetics.
How do splicing kinetics associate with splice site selec-
tion? Does alternative splicing exhibit different kinetics?
Evidence is emerging that, at least for certain genes, alter-
native splicing occurs mostly post-transcriptionally,
whereas constitutive exons are spliced co-transcriptionally
[74]. In addition, changing the nucleotides next to GU at
the 5" splice site can alter both the kinetics of spliceosome
remodeling and splicing efficiency [75]. How the spliceo-
some makes a choice amongst splice sites during the
kinetic competition between splicing and transcription
[70, 71, 74, 76] is still an unanswered question that
requires further investigation.

Can we measure the extent of stochastic RNA
processing experimentally?

The initial concept of ‘splicing noise’ comes from the
analysis of EST sequences and microarray-based mRNA
abundance measurements [77]. These data suggested a
positive correlation between the number of alternative
isoforms and the number of splicing reactions (i.e., the
number of introns per gene and the level of gene expres-
sion). A more precise evaluation was provided by the de
novo identification of splice junctions based on
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RNA-seq data. Such studies revealed the existence of a
large class of low-abundance isoforms [78]. Most of
these isoforms contain the GU-AG dinucleotides, which
indicate that they are generated from a random splice
site choice. When thousands of independent RNA-seq
datasets were combined, a significant number of previ-
ously unannotated splice junctions became evident

across different tissues and cell types [79]. Although the
current focus when analyzing these data is still on major
alternative splicing events, a more comprehensive ana-
lysis across all splicing junctions would be beneficial for
elucidating the distribution of isoform frequencies. Inter-
estingly, a simple two-parameter Weibull distribution
can be used to explain the statistical distribution of the
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isoforms of all transcribed genes, indicating a possible
general model of stochastic splicing [80].

Ideally, measurement of the stochasticity in splicing
requires capturing each individual event in a population.
Single-cell RNA-seq [3, 81-87] provides a promising av-
enue, but there are two major challenges: the first comes
from the single-molecule capture efficiency. Using a
spike-in assisted evaluation, Wold and colleagues [88]
were able to provide an estimate of single-molecule cap-
ture efficiency of around 0.1, meaning that rare events
are not represented in the single-cell sequencing library.
The second challenge is to distinguish the biological sto-
chasticity from technical noise, which is an enduring
issue in single-cell analysis. Careful evaluation of the
technical noise with quantitative statistical methods is
necessary. Two recent studies carried out splicing ana-
lysis at the single-cell level [89, 90]. One unexpected dis-
covery is that about 20% of the genes exhibit a bimodal
distribution of certain splicing isoforms (Fig. 2c, d).
These bimodal genes are related to differentiation and
cell-type determination. After excluding technical arti-
facts caused by a low capture rate, there are two possible
explanations for the bimodal distribution. First, the dis-
tribution may be due to extrinsic noise. For example,
heterogeneity in the concentration of splicing regulators
in different cells might result in the same pre-mRNA be-
ing processed differently. Second, the bi-modality might
be caused by intrinsic noise. For example, in transcrip-
tion, slow promoter kinetics will result in a bimodal dis-
tribution of gene expression [91]. Similarly, a slow
transition parameter in isoform processing could also
generate a bimodal distribution of isoforms in a cell
population.

Single molecule long-read sequencing (Pacbio
RNA-seq, iso-seq) [92, 93] is another promising tech-
nique for surveying isoform diversity. It can provide
confident high-quality reads for transcripts over 20 kb,
and over 10% of novel splice junctions have been identi-
fied through this strategy. The drawbacks are low
throughput (i.e., limited reads per SMRT cell) and the
potential for relatively high error rates in long reads.

Single-cell sequencing is comprehensive but suffers
from low sensitivity and the potential for the introduction
of error during library preparation and analysis.
Single-molecule imaging is a complementary method.
Single-molecule fluorescent in situ hybridization (smFISH)
[94, 95] is a powerful way to quantify the absolute abun-
dance of endogenous RNA transcripts in individual cells.
Alternative splicing can be visualized by detecting the
unique sequences of the different isoforms. The major ad-
vantage of this method compared to single-cell RNA-seq
is that it provides both spatial information and
sequence-specific information. For example, by probing
the introns undergoing alternative splicing in the genes

Page 6 of 10

Sxl and nPTB, Vargas et al. [74]showed that alternatively
processed introns have delayed kinetics and are more fre-
quently detected in the nucleoplasm. Waks et al. [96]
probed the alternative spliced exons in genes CAPRIN1
and MKNK2, and examined the cell-to-cell variability by
measuring the fraction of isoform abundance. Notably,
they found that the distribution of isoform ratio could be
explained by a theoretical stochastic model [96]. Neverthe-
less, standard smFISH requires the targeting of a single
transcript with probes of approximately 48 oligonucleo-
tides, each spanning about 17-22 nt and labeled at their
3" end with one fluorophore. For the large majority of al-
ternatively spliced isoforms, which only have slight differ-
ences in their mRNA sequences, a more sensitive
approach such as the recently developed inosine fluores-
cence in situ hybridization (inoFISH) [97] is necessary.

Both smFISH and inoFISH require killing cells, and nei-
ther addresses the dynamic nature of splicing. To explore
the stochasticity in splicing, it is necessary to record spli-
cing kinetics in living cells. Taking advantage of the bac-
teriophage MS2 stem-loop and fluorescence-labeled coat
proteins, researchers now can record RNA dynamics at
the single-molecule level. Initially, fluorescence recovery
after photobleaching (FRAP) together with MS2
stem-loop-labeled genes were used to monitor splicing
and transcription kinetics [98]. The improvement in the
imaging and analysis of RNAs at the single-molecule level
enabled the direct observation of nascent RNAs at the
gene locus. The fluctuation of intron and exon signals was
recorded, and transcription and splicing kinetics were ex-
tracted through the cross-correlation function [70, 72].
With the advance of genome editing [99, 100], it is now
possible to label single molecules of RNA produced from
endogenous loci, which will allow tracing of the nascent
RNA synthesized under physiological conditions. The in-
formation provided by live imaging of splicing of endogen-
ous genes will extend our understanding of the
stochasticity in splicing kinetics, including the impact of
signaling networks and the chromatin environment.

Tremendous progress in the single-cell sequencing and
real-time measurement of single-molecule fluorescence
has accelerated our understanding of splicing stochasticity.
An integrated method that combines the ‘bird’s-eye view’
provided by high-throughput sequencing and the detailed
information from time-lapse single-molecule microscopy
will facilitate further advancements.

Understanding the physiological role of noise in
RNA processing

To understand a potential functional role for variability
(stochastic or otherwise) in RNA sequence, a potential
starting point is the assessment of the protein products.
The proposition of ‘one gene, multiple proteins’ is
rooted in the early days soon after the discovery of
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alternative splicing. Yet, there is debate on the extent to
which alternative splicing can change the protein reser-
voir. Of course, there are numerous examples showing
that functionally distinct proteins are generated from al-
ternative splicing isoforms. More recently, using ribo-
some profiling, it has been shown that more than 75% of
medium-to-high abundance alternative cassette exons
are occupied by ribosomes [101]. Over 60% of these cas-
sette exons preserve the reading frame, in agreement
with the observation that short, frame-preserving cas-
sette exons are more evolutionarily favored [102]. An
opposing view is that although thousands of alternative
splicing isoforms are identified through RNA-seq, only a
small portion of them are identified by large-scale mass
spectrometry [103]. In the early days of GENCODE,
Tress et al. [104] examined the limited number of re-
ported alternative splicing events. They concluded that
many alternative spliced transcripts, if translated, would
drastically change the structure and function of the pro-
tein products. Nevertheless, it is hard to predict the pro-
tein structure that would result from some isoforms, or
whether the sequence would result in an unstable fold-
ing status [104]. The follow-up study, based on a
large-scale human proteomics database analysis, suggests
that most highly expressed genes have one dominant
isoform [105]. Nevertheless, owing to the limited sensi-
tivity of mass spectrometry-based proteomics, we still do
not know what proportion of alternative splicing iso-
forms will result in functional proteins.

Did biological systems evolve to suppress splicing noise?
Alternatively, has the system evolved to exploit this noise?
The most common noise-reducing regulatory mechanism
is negative feedback. RNA quality control systems, such as
nonsense-mediated decay (NMD), nonstop decay (NSD),
and no-go decay (NGD), have evolved to mitigate errors
in RNA processing [106]. In addition to negative feedback,
kinetic proofreading also plays a role in dampening spli-
cing noise [107, 108]. On the other hand, noisy splicing
has been proposed to give rise to population heterogeneity
and may be essential in neurogenesis [109, 110], innate
immunity [111], and evolution [112, 113]. Notably, recent
work has also demonstrated a global alteration in splicing
in cancers that involve mutations in core spliceosomal
subunits such as U2AF1 and SF3B1 [114]. Intensive se-
quencing efforts from patients’ samples argued that the
splicing changes in these patients are minor and highly
variable [115-117]. To date, it has been difficult to attri-
bute either the cancer phenotype or the prognosis to iso-
form changes affecting a specific set of genes. Cancer is an
evolutionary disease and these spliceosomal mutations
often occur at an early stage [118-120]. One possibility
might be that the mutations in spliceosomal proteins func-
tion as an amplifier of splicing noise, as has been sug-
gested for splicing alterations in other disease states [121].
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Low-abundance isoforms that are generated through spli-
cing noise may allow the new variant to be evolutionarily
tested and could benefit tumor progression in a heteroge-
neous way.

Current limitations and outlook

Splicing has been studied intensively, but it is only one of
the processes that determine the chemical composition of
mRNA. The roles of RNA editing and RNA modifications
are now coming into focus as additional potential sources
of heterogeneity. Transcriptome profiling techniques are
powerful because of the exquisite detail they provide, and
imaging allows researchers to follow cells over time.
Future efforts to combine these advantages in order to
generate longitudinal studies of transcription and splicing
are promising but in the early stages [122]. In the mean-
time, the problem of interpreting the phenotypic conse-
quences of variability remains a considerable challenge.
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