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Abstract

Background: Genome-wide association studies conducted on QRS duration, an electrocardiographic measurement
associated with heart failure and sudden cardiac death, have led to novel biological insights into cardiac function.
However, the variants identified fall predominantly in non-coding regions and their underlying mechanisms remain
unclear.
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Results: Here, we identify putative functional coding variation associated with changes in the QRS interval duration by
combining Illumina HumanExome BeadChip genotype data from 77,898 participants of European ancestry and 7695
of African descent in our discovery cohort, followed by replication in 111,874 individuals of European ancestry from
the UK Biobank and deCODE cohorts. We identify ten novel loci, seven within coding regions, including ADAMTS6,
significantly associated with QRS duration in gene-based analyses. ADAMTS6 encodes a secreted metalloprotease of
currently unknown function. In vitro validation analysis shows that the QRS-associated variants lead to impaired
ADAMTS6 secretion and loss-of function analysis in mice demonstrates a previously unappreciated role for ADAMTS6 in
connexin 43 gap junction expression, which is essential for myocardial conduction.

Conclusions: Our approach identifies novel coding and non-coding variants underlying ventricular depolarization and
provides a possible mechanism for the ADAMTS6-associated conduction changes.

Keywords: Exome chip, Conduction, ADAMTS6, Meta-analysis,

Background
In the heart, the ventricular conduction system propagates
the electrical impulses that coordinate ventricular cham-
ber contraction. The QRS interval on an electrocardio-
gram (ECG) is used clinically to quantify duration of
ventricular depolarization in the heart. Prolonged QRS
duration is an independent predictor of mortality in both
the general population [1–4] and in patients with cardiac
disease [5–10].
QRS interval duration is a quantitative trait influenced

by multiple genetic and environmental factors and is
known to be influenced by both age and gender [11, 12].
The heritability of QRS duration is estimated to be 35–55%
from twin and family studies [13–16].
We previously performed a genome-wide association

meta-analysis in 40,407 individuals and identified 22
genetic loci associated with QRS duration [17]. The
QRS-associated loci highlighted novel biological pro-
cesses such as kinase inhibitors, but also pointed to
genes with established roles in ventricular conduction
such as sodium channels, transcription factors, and
calcium-handling proteins. However, the common risk
variants identified in genome-wide association studies
(GWAS) reside overwhelmingly in regulatory regions,
making inference of the underlying causative genes
difficult. Furthermore, as with most complex traits,
the variants discovered to date explain only a small
proportion of the total heritability (the “missing herit-
ability” paradigm), suggesting additional variants are
yet to be identified. In fact, the role of rare and low
frequency variants, which cannot currently be
detected using standard genome-wide single nucleo-
tide polymorphism (SNP) chip arrays, have not been
fully investigated. Here we used the Illumina Huma-
nExome BeadChip to focus on rare (MAF < 1%), low
frequency (MAF = 1–5%), and common (MAF ≥ 5%)
putative functional coding variation associated with
changes in ventricular depolarization.

Results and Discussion
We combined genotype data from 77,898 participants of
European ancestry and 7695 of African descent participat-
ing in the Cohorts for Heart and Aging Research in Gen-
omic Epidemiology (CHARGE) Exome-Chip EKG
consortium (Additional file 1: Table S1). A total of
228,164 polymorphic markers on the exome-chip array
passed quality control and were used as a basis for our
analyses. Through single variant analysis in the combined
European and African datasets, we identified 34 variants
across 28 loci associated with QRS duration that passed
the exome-chip-wide significance threshold (P < 6.17 ×
10−8 for single variants [Table 1, Additional file 2: Figure
S1]). Eight of the identified loci were novel and five of
these were driven by low frequency (MAF < 5%) and com-
mon (MAF ≥ 5%) non-synonymous coding variation. We
confirmed 20 of the 29 previously identified QRS duration
loci [14, 17–19], the remaining loci were not covered by
the Exome-Chip and/or did not pass quality control (QC)
(Additional file 1: Table S2). As might be anticipated when
combining two ancestries in association analyses, we de-
tected heterogeneity of effects for one variant (Cochran’s
heterogeneity P < 1.47 × 10−3, a Bonferroni corrected P
value of α=0.05/34 variants), Additional file 1: Table S2).
We did not observe evidence for inflation of test statistics
for any of the analyses (λGC = 1.049, European and African
ancestries, combined, Additional file 2: Figure S2, individ-
ual ancestry results, Additional file 2: Figures S3–S6). We
next sought to replicate the 34 lead variants of our 28 loci
in a replication meta-analysis of 111,874 individuals from
the UK Biobank [20] and deCODE genetics [21] cohorts.
In the replication meta-analysis, 30 lead variants for 25
loci replicated (P ≤ 1.47 × 10−3 = 0.05/34 variants), seven
of which were novel, ten of which are known
(Additional file 1: Table S2). The remaining four variants
that did not replicate in UK Biobank encompass two
previously established loci (one in locus SCN5A/SCN10A
for which the other five variants replicated) and two novel
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loci (SENP2, IGF1R). This is likely due to differences in
phenotype acquisition methods (UK Biobank having
exercise ECGs measured), though effect size directions
between discovery and replication remained consistent
and P values of non-replicating variants were all below
nominal significance (P < 0.05).

Sex-specific associations with QRS duration
Sex differences in QRS duration are well established
(men have significantly longer QRS durations than
women [22, 23]), and might be attributable to differen-
tial effects of genetic variation in men and women.
Therefore, we performed sex-stratified association

analyses (Additional file 1: Table S3, Additional file 2:
Figures S7 and S8). We included only those studies that
had both male and female participants to mitigate
potential bias due to contributions from single-sex
cohorts. In total, up to 31,702 men and 39,907 women
were included from both European and African ancestry
studies. We found suggestive evidence for a sex-specific
locus that was not identified in the combined analysis.
The non-synonymous variant rs17265513 (p.Asn310Ser)
in ZHX3 (zinc fingers and homeoboxes 3) showed a sig-
nificant association only in men (Pmale = 4.89 × 10−8, β(SE)
= − 0.52(0.09)), whereas no effect was observed for women
(Pfemale = 0.86, β(SE) = − 0.01(0.08)); however, there was no

Table 1 Lead SNPs for 28 loci identified for QRS duration in a combined European and African American ancestry meta-analysis

Locus Band dbSNPID A1/A2 cMAF beta(se) P n Nearest gene Annotation

Novel loci

1 2q31.2 rs17362588 A/G 0.081 0.52 (0.08) 4.20 × 10−11 85,593 CCDC141 Non-synonymous

2 3p22.2 rs116202356 A/G 0.015 − 1.63 (0.17) 1.23 × 10−20 85,593 DLEC1 Non-synonymous

3 3q27.2 rs6762208 A/C 0.357 − 0.31 (0.05) 3.45 × 10−12 85,593 SENP2 Non-synonymous

4 6q22.32 rs4549631 C/T 0.481 0.28 (0.04) 5.56 × 10−11 85,593 PRELID1P1 Intergenic

5 8q24.13 rs16898691 G/C 0.040 − 0.92 (0.11) 5.71 × 10−16 79,976 KLHL38 Non-synonymous

6 12q13.3 rs2926743 A/G 0.257 − 0.32 (0.05) 9.40 × 10−11 85,593 NACA Non-synonymous

7 15q26.3 rs4966020 G/A 0.387 − 0.27 (0.04) 2.99 × 10−9 85,593 IGF1R Intronic

8 20p12.3 rs961253 A/C 0.357 0.30 (0.04) 1.20 × 10−11 85,593 CASC20 Intergenic

Previously identified loci

9 1p32.3 rs11588271 A/G 0.333 − 0.34 (0.05) 7.59 × 10−14 85,593 CDKN2C Intergenic

10 1p13.1 rs4074536 C/T 0.305 − 0.29 (0.05) 8.27 × 10−10 85,593 CASQ2 Non-synonymous

11 2p22.2 rs7562790 G/T 0.424 0.37 (0.04) 4.34 × 10−17 85,593 CRIM1 Intronic

12 2p22.2 rs17020136 C/T 0.185 0.38 (0.07) 1.02 × 10−8 59,876 HEATR5B Intronic

13 3p22.2 rs6795970 A/G 0.371 0.80 (0.05) 9.19 × 10−70 85,593 SCN10A Non-synonymous

14 3p21.1 rs4687718 A/G 0.164 − 0.36 (0.06) 1.19 × 10−8 83,134 TKT Intronic

15 5q33.2 rs13165478 A/G 0.377 − 0.68 (0.04) 6.74 × 10−52 85,593 HAND1 Intergenic

16 6p21.2 rs9470361 A/G 0.249 0.84 (0.05) 1.21 × 10−63 85,593 CDKN1A Intergenic

17 6q22.31 rs11153730 C/T 0.475 0.56 (0.04) 1.99 × 10−38 85,593 SLC35F1 Intergenic

18 7p14.2 rs1362212 A/G 0.144 0.55 (0.06) 1.22 × 10−18 85,593 TBX20 Intergenic

19 7p12.3 rs7784776 G/A 0.397 0.27 (0.04) 1.18 × 10−9 85,593 IGFBP3 Intergenic

20 7q31.2 rs3807989 A/G 0.427 0.40 (0.04) 2.14 × 10−19 85,593 CAV1 Intronic

21 12q24.21 rs3825214 G/A 0.200 0.46 (0.05) 1.10 × 10−17 85,593 TBX5 Intronic

22 12q24.21 rs7966651 T/C 0.270 − 0.38 (0.05) 6.74 × 10−15 85,593 TBX3 Intergenic

23 13q22.1 rs1886512 A/T 0.380 − 0.36 (0.05) 3.17 × 10−13 70,887 KLF12 Intronic

24 14q24.2 rs11848785 G/A 0.237 − 0.44 (0.05) 5.59 × 10−18 85,593 SIPA1L1 Intronic

25 17q21.32 rs17608766 C/T 0.127 0.70 (0.07) 9.81 × 10−27 85,593 GOSR2 UTR3

26 17q24.2 rs9912468 G/C 0.416 0.43 (0.05) 2.34 × 10−21 79,976 PRKCA Intronic

27 18q12.3 rs663651 G/A 0.446 − 0.44 (0.05) 6.59 × 10−18 61,604 SETBP1 Non-synonymous

28 20q11.22 rs3746435 C/G 0.190 − 0.36 (0.06) 2.67 × 10−10 79,976 MYH7B Non-synonymous

Top panel: novel loci; bottom panel: previously identified loci
Locus index number for each independent locus, Band cytogenetic band in which the lead SNP for the locus resides, dbSNPID dbSNP rs-number of the lead SNP of
the locus, A1/A2 coded/non-coded alleles, cMAF cumulative minor allele frequency, beta(se) effect size (standard error) in ms, P P value, n total number of
individuals analyzed for this variant, Nearest gene (nearest) gene, Annotation variant function (protein coding)
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significant difference consistent with an interaction with
sex (P = 2.3 × 10−5). Additionally, no further evidence was
observed in the replication analyses alone (Pmale = 7.95 ×
10−4, β(SE) = − 0.30(0.09), Nmales = 50,457), (Pfemale =
3.55 × 10−2, β(SE) = − 0.17(0.08), Nfemales = 61,417).

Association of coding and non-coding variants with QRS
duration
Among the eight newly identified loci in the
sex-combined analysis, five had lead variants that were
non-synonymous: CCDC141 (Coiled-Coil Domain Con-
taining 141); KLHL38 (Kelch Like Family Member 38);
DLEC1 (Deleted in Lung and Esophageal Cancer 1);
NACA (Nascent Polypeptide-Associated Complex Alpha
subunit); and SENP2 (SUMO1/Sentrin/SMT3 Specific
Protease 2). Suggestive evidence for association of the
same non-synonymous variant in CCDC141 (rs17362588;
P = 4.75 × 10−7) and an intronic variant in KLHL38
(rs11991744; P = 1.25 × 10−7) with QRS duration was
shown in two earlier GWAS [24, 25]. DLEC1 has recently
been suggested to have a possible role as a tumor suppres-
sor [26], and while specific roles for KLHL38 and
CCDC141 (a centrosome associated protein) have not yet
been elucidated, they show the highest expression in skel-
etal and/or cardiac tissue, respectively, among the tissues
examined in the Genotype-Tissue Expression (GTEx) Por-
tal database (http://www.gtexportal.org) [27]. Two of the
novel loci, NACA and SENP2, have established roles in
cardiac development and dysfunction. NACA produces
the isoform skNAC (skeletal NACA) and acts as a skeletal
muscle- and heart-specific transcription factor and is crit-
ical for ventricular cardiomyocyte expansion [28].
Cardiac-specific knockdown of skNAC in a Drosophila
Hand4.2-Gal4 driver cell-line results in severe cardiac de-
fects [19]. Cardiac-specific overexpression of SENP2, a
SUMO-specific protease, leads to congenital heart defects
and cardiac dysfunction [29].
In the sex-stratified analysis, the association with ZHX3

(Zinc Fingers and Homeoboxes 3) was also driven by an
amino acid changing variant. ZHX3 encodes a transcrip-
tional repressor whose functions are largely unknown.
However, the sex-specific association might be explained
by hormonal changes that have previously been hypothe-
sized to explain a variety of sex-specific differences ob-
served in ECG measures and conduction disorders [30,
31]. A sex-specific association of ZHX3 has also been pre-
viously shown for total cholesterol levels (the effect is only
significant in men) [32].
We further identified an intronic variant in the IGF1R

(Insulin Like Growth Factor 1 Receptor) locus and two
intergenic variants: rs4549631 at locus 6q22.32 and
rs961253 at locus 20p12.3. Interestingly, when queried
against results from the GTEx project portal [27] for blood
and eight tissues (including adipose [subcutaneous], artery

[aorta, coronary, tibial], heart [atrium, appendage, left ven-
tricle], lung, muscle [skeletal], nerve [tibial], skin [sun
exposed], and thyroid), the lead intronic variant in IGF1R
(rs4966020; MAF EA/AA 0.36/0.63) is a left ventricle
tissue-specific cis-eQTL (P = 2.4 × 10−7). The variant is also
in strong linkage disequilibrium with the strongest
cis-eQTL for this tissue (rs4966021, P = 5 × 10−8). IGF1R
promotes physiological hypertrophy but protects against
cardiac fibrosis [33]; the signaling pathways induced by its
binding partner, IGF1, regulate contractility, metabolism,
hypertrophy, autophagy, senescence, and apoptosis in the
heart [34]. The nearest genes for the two intergenic vari-
ants are PRELID1P1 (PRELI Domain Containing 1 Pseudo-
gene 1 [locus 6q22.32]) and CASC20 (Cancer Susceptibility
Candidate 20 [non-protein-coding]; locus 20p12.3)—the
former a pseudogene and the latter a non-protein-coding
gene, both with currently uncharacterized function.

Rare ADAMTS6 variants are associated with QRS duration
By collapsing rare variants in genes as functional units and
jointly testing these for association, substantial statistical
power-gains can be achieved [35]. We, therefore,
performed gene-based analyses using both the Sequence
Kernel Association Test (SKAT) (Additional file 1: Table
S4) and burden test (T1) (Additional file 1: Table S5),
because these tests have optimal power under different
scenarios. Analyses were restricted to variants with MAF <
1% in a total of 16,085 genes. One gene-based significant
association (P < 5.18 × 10−7) was identified in ADAMTS6
(A Disintegrin-Like And Metalloproteinase with Throm-
bospondin Type 1 Motif 6; PSKAT = 8.18 × 10−8, Table 2),
when including only variants classified as damaging (see
“Methods”). Four additional genes showed suggestive
evidence of association (P < 1 × 10−4) (Table 2).
The ADAMTS6 gene-based signal is driven by two rare

non-synonymous variants: rs61736454 (p.Ser90Leu) and
rs114007286 (p.Arg603Trp), which have allele frequencies
of 0.0018 and 0.0021, respectively (Additional file 1: Table
S6). Notably, a look-up in the independent deCODE QRS
duration analysis showed that rs61736454 was highly
significant, however not exome-wide ([P = 2.65 × 10−7,
β(SE) = 3.01(0.58)], MAF = 0.002, N = 59,903), and was
extremely well imputed (info score = 0.995). Importantly,
after meta-analysis with discovery exome summary
statistics, the signal reached exome-wide significance
([P = 8.96 × 10−13, β(SE) = 2.75(0.38)], N = 145,496),
underscoring the robustness of our initial discovery
signal driver. Data for rs114007286 were not available.
ADAMTS6 is a highly constrained gene, with a prob-
ability of loss of function intolerance score of 1.0
(pLI = 1.0) (Exome Aggregation Consortium [ExAC],
Cambridge, MA, USA; http://exac.broadinstitute.org/).
The p.Ser90Leu variant lies within the ADAMTS6
propeptide, which is predicted to be important for

Prins et al. Genome Biology  (2018) 19:87 Page 4 of 17

http://www.gtexportal.org
http://exac.broadinstitute.org/


initiation of folding, because the homologous ADAMTS9
propeptide is an intramolecular chaperone essential for its
secretion [36]. The second variant, p.Arg603Trp, is lo-
cated in the N-terminal-most TSR domain (TSR1) of
ADAMTS6. This domain is the target of protein-O-fuco-
sylation, which is a QC signal that prevents secretion of
ADAMTS proteins that are improperly folded [37].

ADAMTS6 is necessary for cardiac development and
expression of gap junction protein Cx43
ADAMTS6 belongs to a family of metalloproteases that
mediates extracellular proteolytic processing of extracel-
lular matrix (ECM) components and other secreted
molecules. ADAMTS6 is closely related to ADAMTS10,
which interacts with and accelerates assembly of
fibrillin-1, mutations in which cause Marfan syndrome
[38]. This suggests that ADAMTS6 could regulate
cardiac ECM. While no specific ADAMTS6 substrates
have been unequivocally identified, it was reported to
regulate focal adhesions, epithelial cell–cell interactions,
and microfibril assembly in cultured cells [39]. We show
by RNA in situ hybridization that Adamts6 is expressed
in the atrioventricular and septal cushions and myocar-
dium of the embryonic heart, with expression persisting
into adult ventricular, trabecular, and septal myocardium
(Fig. 1a–d).
Mice with recessive Adamts6 mutations were recov-

ered in a forward genetic screen [40] (Fig. 1e and f).
One mutation (p.Met1Ile) affects the start codon and is
predicted null. The second mutation (p.Ser149Arg) lies
in the propeptide. Both mutations cause prenatal/neo-
natal lethality with identical congenital heart defect
phenotypes (Additional file 1: Table S7), comprising
double outlet right ventricle (Fig. 1j, Additional file 3:
Video S1), atrioventricular septal defect (Fig. 1k), and
ventricular hypertrophy (Fig. 1j and l).
Ventricular conduction relies on cardiomyocyte coup-

ling through gap junctions, with connexin 43 (Cx43)
being the predominant myocardial gap junction protein
in the human and mouse myocardium. Gja1 (encoding
Cx43) knockout mice exhibit slow conduction, QRS pro-
longation, and increased susceptibility to ventricular

arrhythmias [41–43], consistent with its role in mediat-
ing electrical coupling required for efficient propagation
of ventricular depolarization. While Adamts6 heterozy-
gous (Adamts6m/+) adult mice are viable and without
structural heart defects (Additional file 2: Figure S9),
their ventricular myocardium shows reduced Cx43 stain-
ing (Fig. 2a and b). Western blot shows reduction of
Cx43 protein in the adult Adamts6m/+ myocardium
(Fig. 2c and d). Interestingly, parallel quantitative
real-time polymerase chain reaction (qRT-PCR) shows
unchanged Gja1 messenger RNA (mRNA) expression
(Fig. 2e), suggesting post-transcriptional regulation.
Analysis of embryonic day 14.5 homozygote Adamts6m/m

mutants shows Cx43 is completely absent in the
ventricular myocardium (Fig. 2a and b). Thus, whereas
Adamts6m/m mice have severe structural heart defects and
Cx43 deficiency, Adamts6m/+ hemizygosity leads to
reduction in Cx43 expression in the ventricles with-
out defects in cardiac morphogenesis. Together these
findings suggest the QRS prolongation in individuals
with rare pathogenic ADAMTS6 variants could arise
from impaired myocardial connectivity due to Cx43
reduction.

Rare ADAMTS6 coding variants lead to impaired
ADAMTS6 secretion
To determine the functional consequences of the two pre-
dicted pathogenic human ADAMTS6 coding variants from
the exome-chip analysis (p.Ser90Leu and p.Arg603Trp),
myc-tagged ADAMTS6 constructs with the variants intro-
duced by site-directed mutagenesis were expressed in
HEK293F cells. Western blotting was used to compare the
levels of mutant and wild type (WT) myc-tagged
ADAMTS6 in the transfected cell lysates and medium. As
positive and negative controls, respectively, we transfected
the known pathogenic murine variant (p.Ser149Arg) and
two rare non-synonymous human ADAMTS6 variants
predicted to be benign (p.Ser210Leu and p.Met752Val).
Western blotting confirmed that the Adamts6 p.Ser149Arg
variant was not secreted (Fig. 3a). The predicted human
pathogenic variants show much reduced secretion com-
pared to the WT and benign variants (Fig. 3b–d).

Table 2 Gene-based test association results (for genes with variants classified as damaging)

Gene NSNPs cMAF beta(se)T1-Burden PT1-Burden PSKAT Protein function Cardiac-specific involvement

ADAMTS6 12 0.0097 − 0.72 (0.23) 1.48 × 10−3 8.18 × 10−8 Zinc-dependent protease –

CSRP3 3 0.0048 1.38 (0.31) 9.65 × 10−6 9.10 × 10−6 Regulator of myogenesis Myocyte cytoarchitecture maintenance

FHOD3 17 0.0171 0.00 (0.17) 9.86 × 10−1 1.82 × 10−5 Actin filament assembly Myofibril development and repair

ISM1 5 0.0037 1.47 (0.36) 5.05 × 10−5 5.88 × 10−5 Angiogenesis inhibitor –

TBX5 8 0.0171 − 0.32 (0.17) 5.21 × 10−2 7.80 × 10−5 T-box transcription factor Cardiac development and cell cycle control

Displayed are the top five genes that have the lowest P values in the SKAT test (for genes with damaging variants)
Gene gene in which variants were collapsed, NSNPs number of variants used in the collapsed variant test, cMAF cumulative minor allele frequency of variants in the
test, beta(se)T1burden effect size (standard error) in ms, PT1-Burden P value of T1-burden test, PSKAT P value of SKAT test, Protein function function of the protein
encoded by respective gene, Cardiac-specific involvement, literature support for physiological involvement of the protein in the heart
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Significantly, the molecular masses of the secreted p.Ser90-
Leu and p.Arg603Trp variants observed in cell lysate are
comparable to that of the WT protein, indicating normal
glycosylation and propeptide excision, which are essential
for ADAMTS zymogen conversion to their mature forms
[44]. These results suggest that heterozygous individuals
have a reduction of secreted ADAMTS6 to 50% of normal,
implying reduced proteolytic activity. The resulting disrup-
tion of proteolytic remodeling could potentially affect cell–
cell and cell–matrix interactions essential for efficient Cx43
gap junction assembly. However, the rs61736454 (p.Ser90-
Leu) and rs114007286 (p.Arg603Trp) variants were associ-
ated with longer and shorter QRS duration, respectively.
The reduced secretion observed was more profound for the
rs61736454 variant compared to rs114007286, and the
assay does not predict what impact a small amount of se-
creted protein may have, nor how it interacts in the pres-
ence of other modifier genes/variants carried by the same
individual. Additionally, the two variants might affect

overall protein function and interaction with binding part-
ners in different ways.

Conclusions
In a meta-analysis of data from 77,898 participants of
European ancestry and 7695 of African descent in our dis-
covery cohort participating in the Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE)
Exome-Chip ECG consortium, we identified 28 loci associ-
ated with QRS duration. With the addition of 111,874 indi-
viduals of European ancestry from the UK Biobank and
deCODE cohorts, all 34 variants across the 28 loci passed
the exome-chip-wide significance threshold, indicating our
results are robust. Furthermore, effect size directions
between discovery and replication remained consistent and
P values of non-replicating variants in the replication ana-
lysis alone were all below nominal significance (P < 0.05).
Novel loci include genes involved in cardiac development
and dysfunction, some of which are highly expressed in

Fig. 1 Adamts6 cardiac expression, sequence conservation, and cardiac anomalies in Adamts6-deficient mice. a–d Adamts6 (red punctate signal) is
expressed in the outflow tract (a, blue arrowhead), heart valves (a, yellow arrowhead), atria (a, green arrowhead), and ventricular myocardium
(a, orange arrowhead, b-d). e, f Diagram of the two Adamts6 mutant alleles recovered: Met1Ile and Ser149Arg. The sequence alignment shows
conservation of the Ser149 residue in ADAMTS6 across species. g–l Congenital heart defects observed in Adamts6 Ser149Arg (Adamts6m/m)
mutant embryos. A WT mouse heart with normal atrial, ventricular, and outflow tract anatomy (g), an intact atrioventricular septum (d), and
normal ventricular myocardium (i). Homozygous Adamts6 Ser149Arg mutants (Adamts6m/m) exhibit a spectrum of congenital heart defects, such
as a double outlet right ventricle (j, in which the aorta and pulmonary artery both arise from the right ventricle; see Additional file 3: Video S1) or
an atrioventricular septal defect (AVSD) (k, in which the atrial and ventricular septa fail to form). Thickening of the ventricular wall is commonly
observed, indicating ventricular hypertrophy (l). These mutant hearts (j–l) are shown at embryonic day (E)16.5 but their development is delayed,
giving an appearance similar to WT hearts at E14.5 (as shown in (g–i)). Ao aorta, AVSD atrioventricular septal defect, LA left atrium, LV left
ventricle, Pa pulmonary artery, RA right atrium, RV right ventricle. Scale bar: (a) 500 μm; (b–d) 50 μm; (g–l) 1 mm
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skeletal and/or cardiac tissue. To establish further evidence
for these novel loci and mechanisms underlying each asso-
ciation, future functional experiments are essential.
The present study also highlights the efficacy of

large-scale population-based exome-chip analysis for
discovery of non-synonymous coding variants with sig-
nificant functional effects. In gene-based tests, we identi-
fied an association between ventricular depolarization
and rare non-synonymous variants in ADAMTS6, a gene
not previously implicated in cardiac conduction. We
chose to focus on this novel locus and seek functional
validation as the association was driven by multiple
rare coding variants that were predicted to be dam-
aging by in silico tools. The coding variants driving
the association in the population study and the muta-
tions identified in the mouse forward genetic screen
all impair ADAMTS6 secretion, indicating reduction/
loss of function. Significantly, although heterozygosity
of the variants in mice is not associated with struc-
tural heart defects, we detected reduction of Cx43
gap junctions in the ventricular myocardium. Homo-
zygous Adamts6 mutants show complete loss of Cx43
gap junctions as well as structural heart defects, im-
plying a dosage effect. Together, these findings

indicate that ADAMTS6 has a novel role in regulat-
ing gap junction-mediated ventricular depolarization,
with quantitative reduction in ADAMTS6 causing car-
diac conduction perturbation. While our study focuses
on cardiac conduction, the findings support the po-
tential broad utility of large-scale exome-chip analysis
for interrogating coding variants associated with other
physiological or clinical parameters.

Methods
Discovery association analyses
Study cohorts
All participating studies formed the CHARGE EKG
exome-chip consortium, including those belonging to
the CHARGE consortium and external studies to
investigate the role of functional variation in electro-
cardiographic traits. Twenty-two cohorts participated
in the QRS duration analysis effort representing a
maximum total sample size of 85,593 samples,
consisting of 77,898 participants of European ancestry
(91%) and 7695 of African descent. Individual study
details and characteristics are summarized in
Additional file 1: Table S1.

Fig. 2 Reduction of Cx43 intercalated disk gap junction staining in Adamts6-deficient mice. a, b Cx43 staining (green) (a) is reduced throughout
ventricular myocardium in embryonic day (E) 14.5 Adamts6m/m embryos and 6-week and 12-month Adamts6m/+ mice and quantified in (b). DAPI
(blue) was used to visualize cell nuclei. c, d Representative western blot (c) and quantification (d) shows reduced Cx43 in three pairs of 6-week
Adamts6m/+ and WT myocardium controls. Gapdh was used as a loading control. e No change in Gja1 RNA level in 6-week and 12-month
Adamts6m/+ myocardium as compared to control. Scale bar: 50 μm. *P ≤ 0.01. E embryonic, W weeks, M months
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Phenotype measurements
We analyzed QRS duration measured in milliseconds. In
each study, individuals were excluded from the analyses if
these had a QRS duration of > 120 ms, atrial fibrillation
(AF) on baseline electrocardiogram, a history of myocar-
dial infarction or heart failure, had Wolff–Parkinson–
White syndrome (WPW), a pacemaker, or used Class I
and class III blocking medications (those medications with
prefix C01B* according to the Anatomical Therapeutic
Chemical (ATC) Classification System, http://
www.whocc.no/atcddd/) [45]. For cohorts that were dis-
ease case-control studies, we included only the control
subjects in our analyses irrespective of the nature of the
case disease.

Genotyping and quality control
Each participating study performed genotyping using the
Illumina HumanExome BeadChip / HumanCoreExome
platforms. Owing to the difficulty of accurately detecting
and assign genotype calls for rare variants (MAF < 1%),
an initial core set of CHARGE cohorts, comprising ap-
proximately 62,000 samples, assembled intensity data
into a single project for a joint improved calling. The
quality of the joint calling was assessed through

investigating the concordance of genotypes in samples
having both exome-chip and exome-sequence data, de-
scribed extensively elsewhere [46, 47]. Using the curated
clustering files from the CHARGE central calling effort,
several cohorts within our study re-called their geno-
types. The remainder of participating studies used either
Gencall [48] or zCall [49], or a combination of both. Full
details concerning the genotyping and quality control
for each cohort are summarized in Additional file 1:
Table S1. Individual studies performed sample-level
genotype QC filtering for call rate, removing autosomal
heterozygosity outliers, gender mismatches, duplicates as
established by identity by descent (IBD) analysis, and re-
moved ethnic outliers as determined by multidimen-
sional scaling. Poorly called variants were typically
removed by filtering for Hardy-Weinberg equilibrium
test P value (pHWE), call rate, and filtering removing
poorly clustering variants. Each study aligned their data
reference strand to the Illumina forward strand using a
central SNP allele reference and annotation file (SNP info
file) [46] for the Illumina Exome Chip. Variants were all
mapped to GRCh37/hg19. Only variants present within
the SNP info file were initially considered for analyses,
247,871 in total. Next, we filtered out 9252 variants that

Fig. 3 A mouse Adamts6 ENU mutant and predicted damaging ADAMTS6 variants have impaired secretion. a, b Representative western blots
using anti-Myc antibody show a major molecular species of 150 kDa in HEK293F cell lysates, corresponding to the ADAMTS6 zymogen (Z). In
contrast, the culture medium of cells transfected with WT ADAMTS6 shows a 130 kDa species, corresponding to mature (M, i.e. furin-processed)
ADAMTS6. a The p.Ser149Arg murine variant is not secreted into the culture medium. b The predicted damaging human variants, p.Ser90Leu and
p.Arg603Trp, have reduced secretion, whereas the predicted benign variants, p.Ser210Leu and p.Met752Val, are secreted normally. Lysate and
medium of HEK293F cells transfected with an empty vector (EV) lack immunoreactivity. The membrane was subsequently re-blotted using an
anti-GAPDH monoclonal antibody to demonstrate comparable sample loading. c, d Densitometry of ADAMTS6 signal in lysates (c) and medium
(d) shows reduced secretion of p.Ser90Leu and p.Arg603Trp variants and normal secretion of p.Ser210Leu and p.Met752Val into the medium,
relative to the WT control (*P ≤ 0.01 for n = 3 transfections of each vector)
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failed QC in the joint calling effort, as well as 6591
variants with inconsistent reference alleles across studies
(a total of 11,392 unique SNPs), and considered further-
more only autosomal and chromosome X variants, and
only those that were polymorphic in our study, leaving an
initial set of 228,164 variants for analysis. For our single
variant analyses, we only included variants with MAF >
0.012% (equal to a minor allele count [MAC] of 10),
162,199 in total.

Statistical methods
All association analyses were carried out using the
R-package seqMeta [50]. Each study ran the “prep-
Scores” function and adjusted their analyses for age, gen-
der, body mass index (BMI), height, principal
components, and study-specific covariates when appro-
priate (details in Additional file 1: Table S1). The output
of this function is an R “list” object (“a prepScores ob-
ject”), stored in an .RData file, where each element cor-
responds to a gene, and contains the scores and MAFs
for variants, as well as a matrix of the covariance be-
tween the scores at all pairs of SNPs within a gene. All
studies performed both gender combined and separated
analyses, in addition to separation by ancestry. Using the
prepScores objects from each study, we performed
meta-analyses using the “singlesnpMeta()” for single
variant meta-analyses, and the “burdenMeta” and “skat-
Meta()” functions of SeqMeta. Coefficients and standard
errors from seqMeta can be interpreted as a “one-step”
approximation to the maximum likelihood estimates.
Ancestry groups were analyzed both separate and com-
bined at the meta-analysis level.
For single variant meta-analyses, we included all variants

with a MAC ≥ 10 in order to have well-calibrated type I
error rates [51]. Statistical significance was defined using
Bonferroni corrections. For single variants, maximally
162,199 variants were included in five separate analyses
after filtering for MAC: European and African ancestry
separated and combined (n = 3); and sex-stratified ana-
lyses (n = 2), resulting in a Bonferroni corrected P value of
α=0.05 / 162,199 variants / 5 analyses = 6.17 × 10−8.
Suggestive sexually dimorphic associations were iden-

tified by performing sex-stratified meta-analyses, totaling
39,907 women and 31,702 men, including only from
cohorts that had both male and female samples. Variants
were deemed to be suggestive sex-specific when reaching
below a P value threshold of exome-wide significance
(P < 6.17 × 10−8) in one sex and above nominal signifi-
cance in the other (P > 0.05).
For gene-based tests, also performed using seqMeta

using the “prepScores” objects from individual cohorts,
we assigned variants to genes by annotating all variants on
the Exome Chip using ANNOVAR [52] following RefSeq
[53] gene definitions mapped to human genome build 37

(hg19). In the collapsed variant tests, we included only
variants with MAF < 1% and included only genes for
which two or more variants were present (n = 16,085). We
performed both SKAT [54] and T1 burden [55] tests, for
three different functional sets of variants limited to the
following: (I) all variants; (II) missense, nonsense, splice,
and indel variants; (III) “damaging”: the same variants as
in group II, except for missense only including those that
are predicted to be damaging by at least two out of four
functional prediction algorithms (Polyphen2 [56], SIFT
[57], Mutation Taster [58], and LRT [59]). For the
gene-based tests, we used a Bonferroni corrected P value
significance threshold of α=0.05 / 16,085 genes / 2 differ-
ent tests / 3 functional variant classes = 5.18 × 10−7.
We define a physically independent locus as the genomic

region that contains variants within 250 kb on either side
of LD-independent lead SNPs (exome-wide significant vari-
ants with r2 < 0.1), where LD calculations were based on
European ancestry. Following this definition, in certain
cases LD-independent lead variants are present in overlap-
ping regions, complicating the definition and reporting of
associated genetic loci and harbored genes. Therefore, we
annealed loci if LD-independent exome-wide significant
variants were < 250 kb from each other. Where lead SNPs
from previous analyses were not contained in these regions,
we considered these as novel. LD calculations were per-
formed on the Illumina Exome Chip genotype data from
the TwinsUK cohort [60] (n = 1194), using PLINK 1.9 [61].

Replication association analyses
Study cohort: UK biobank (UKB)
UK Biobank (www.ukbiobank.ac.uk) is a prospective study
of 500,000 volunteers, comprising relatively even numbers
of men and women aged 40–69 years old at recruitment,
with extensive baseline, and follow-up clinical, biochem-
ical, genetic, and outcome measures. Approximately
95,000 individuals were recruited for a Cardio test using a
stationary bicycle in conjunction with a four-lead electro-
cardiograph device at the initial assessment (2006–2008)
and ~ 20,000 individuals performed the test again (the first
repeat assessment: 2011–2013). The Cardio test, there-
after known as the exercise test, started with 15 s of rest
(pre-test), followed by 6 min of exercise (cycling) with an
increasing workload, and a 1-min recovery period without
exercise. To improve accuracy, we calculated an average
QRS waveform by aligning all QRS complexes present in
a window of 15 s from the resting stage. Ectopic beats and
artifacts were removed. Then, we calculated the correl-
ation between each individual QRS complex and the aver-
age QRS waveform and removed those with a correlation
coefficient < 0.8. Finally, we repeated the calculation of the
average QRS waveform by only considering those highly
correlated individual QRS complexes. The QRS width was
measured from the average QRS waveform as the interval

Prins et al. Genome Biology  (2018) 19:87 Page 9 of 17

http://www.ukbiobank.ac.uk


between the onset of the Q wave and the end of the S
wave. Genotyping was performed by UKB using the Ap-
plied Biosystems UK BiLEVE Axiom Array or the UKB
AxiomTM Array. Single Nucleotide Variants (SNVs) were
imputed centrally by UKB using a merged UK10K sequen-
cing + 1000 Genomes imputation reference panel (https://
www.biorxiv.org/content/early/2017/07/20/166298). Fol-
lowing phenotype and genotype QC, a total of 51,971 un-
related individuals of European ancestry remained for
analysis. Thirty-four QRS discovery lead variants selected
for replication were extracted from UKB imputed files, all
being of high quality (Hardy-Weinberg P > 1 × 10−4 and
an info score > 0.5) using QCTOOL v2 and the association
analysis was performed using SNPTEST v2.5.4 assuming
an additive genetic model.

Study cohort: deCODE
ECGs obtained in Landspitali—The National University
Hospital of Iceland, Reykjavik, the largest and only tertiary
care hospital in Iceland—have been digitally stored since
1998. For this analysis, we used information on mean
QRS duration in milliseconds from 151,667 sinus rhythm
ECGs from 59,903 individuals. Individuals with permanent
pacemakers or history of myocardial infarction, heart fail-
ure, atrial fibrillation, or WPW were excluded, as well as
ECGs with QRS duration > 120 ms. ECG measurements
were adjusted for sex, year of birth, and age at measure-
ment. Due to limited availability of information, height,
BMI, or drugs were not accounted for in the analysis. The
genotypes in the deCODE study were derived from
whole-genome sequencing of 28,075 Icelanders using Illu-
mina standard TruSeq methodology to a mean depth of
35X (SD 8X) with subsequent imputation into 160,000
chip-typed individuals and their close relatives [21]. Se-
lected replication variants from the meta-analysis for asso-
ciation with QRS duration were tested in accounting for
relatedness using a mixed effects model as implemented
by BOLT-LMM [62] followed by LD score regression [63].

Statistical analysis
We first performed a fixed-effects inverse variance
weighted meta-analysis combining the summary statistics
data from the UKB and deCODE analyses, followed by a
combined analysis of the discovery and replication sum-
mary statistics using GWAMA v2.2.2 [64].

Mouse and cell models
Western blot analysis
A plasmid vector for expression of the full-length
Adamts6 open reading frame was generated via PCR using
Phusion High-Fidelity DNA Polymerase (catalog no.
M0530 L; New England Biolabs) and embryonic mouse
heart complementary DNA (cDNA) as the template and
inserted into PSecTag2B (V900–20; Life Technologies).

ADAMTS6 variants p.Ser90Leu and p.Arg603Trp were
created in the Adamts6 cDNA using Q5 Site-Directed
Mutagenesis Kit (catalog no. E0554S; New England Bio-
Labs). Primer sequences used for cloning and mutagenesis
are available upon request. Each plasmid insert was veri-
fied by sequencing. Human embryonic kidney (HEK293)
cells obtained from ATCC were maintained in medium
supplemented with 10% fetal bovine serum and 100 U/mL
penicillin and 100 μg/mL streptomycin. The constructs
were transfected with Lipofectamine 3000 Transfection
Kit (catalog no. L3000; Invitrogen) following manufac-
turer’s instructions. After 72 h in serum-free medium, cell
lysates were collected in lysis buffer (0.1% NP-40, 0.01%
sodium dodecyl sulfate, and 0.05% sodium deoxycho-
late in phosphate buffered saline [PBS], pH 7.4).
Extracts were electrophoresed by reducing SDS-PAGE
on 10% Tris-Glycine gels. Proteins were electroblotted
to Immobilon-FL membranes (catalog no. IPFL00010,
EMD Millipore), incubated with primary antibody
anti-myc (Hybridoma core facility; 1:1000; Cleveland
Clinic), anti-GAPDH (catalog no. MAB374; 1:5000;
EMD Millipore), and anti-Cx43 (catalog no. C6219;
1:2000; Sigma-Aldrich), overnight at 4 °C, followed by
IRDye secondary antibodies goat anti-mouse or
anti-rabbit (926–68,170, 827–08365; 1:10000; LI-COR)
for 1 h at room temperature and visualized by Odys-
sey CLx (LI-COR). Band intensity was measured using
ImageJ (NIH, Bethesda, MD, USA).

Statistics All values are expressed as mean ± SEM. A
paired two-tailed Student’s t-test was used to assess stat-
istical significance.

Recovery and phenotyping of Adamts6 mutant mice
Adamts6 mutant mice were recovered from a recessive
ethynitrosourea (ENU) mouse mutagenesis screen
conducted using non-invasive in utero fetal echocardiog-
raphy [40]. Mutants detected with congenital heart
defects by ultrasound imaging were recovered either as
fetuses or at term and further analyzed by necropsy,
followed by histopathology for detailed analysis of intra-
cardiac anatomy with three-dimensional reconstructions
using episcopic confocal microscopy. From the screen,
ten independent Adamts6 mutant lines were recovered,
all exhibiting the identical phenotype. Mouse histology,
immunostaining and RT-PCR experiments were ap-
proved by the Cleveland Clinic Institutional Animal Care
and Use Committee (protocol # 2015–1458, IACUC
number: 18052990).

Mouse mutation recovery
Mutation recovery was conducted by whole-exome capture
using SureSelect Mouse All Exon kit V1, with sequencing
carried out using Illumina HiSeq 2000 with minimum 50X
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average coverage (BGI Americas). Sequence reads were
aligned to the C57BL/6 J mouse reference genome (mm9)
and analyzed using CLCBio Genomic Workbench and
GATK software. All homozygous mutations were geno-
typed across all mutants recovered in the mutant line and
only the Adamts6 mutation was consistently homozygous
across all mutants recovered in the line, the pathogenic
identifying it as mutation. Of the ten mutant lines, nine
were identified to have the same missense mutation
(c.C447G: p.S149R), while one mutant line exhibited loss of
the start codon (c.G3A: p.M1I) and was confirmed to be
null with no Adamts6 transcripts detected with transcript
analysis. The Adamts6missense mutation was subsequently
identified as a spontaneous mutation in the C57BL/6 J
production colony at the Jackson Laboratory.

Histology and immunofluorescence staining and RNA in situ
hybridization
Tissues were fixed in 4% paraformaldehyde in PBS at 4 °C
overnight followed by paraffin embedding. Sections of
7 μm were used for hematoxylin and eosin staining, picro-
sirius red staining, and immunofluorescence for Cx43
(catalog no. C6219; 1:800; Sigma-Aldrich) followed by sec-
ondary goat anti-rabbit antibody (catalog no. 111–
035-144; 1:2000; Jackson Immunoresearch Laboratories
Inc.). Antigen retrieval, i.e. immersion of slides in
citrate-EDTA buffer (10 mM/L citric acid, 2 mM/L EDTA,
0.05% v/v Tween-20, pH 6.2) and microwaving for
1.5 min at 50% power four times in a microwave oven
with 30-s intervals intervening was used before immuno-
fluorescence. Immunofluorescence was quantified by the
ratio of Cx43 signal to DAPI-positive cell nuclei integrated
density (ImageJ; National Institutes of Health, n = 3, with
three samples of each myocardium). Adamts6 RNA in situ
hybridization was performed using RNAScope (Advanced
Cell Diagnostics) following the manufacturer’s protocol.
Briefly, 7-μm sections were deparaffinized and hybridized
to a mouse Adamts6 probe set (catalog no. 428301; Ad-
vanced Cell Diagnostics) using a HybEZ™ oven (Advanced
Cell Diagnostics) and the RNAScope 2.5 HD Detection
Reagent Kit (catalog no. 322360; Advanced Cell
Diagnostics).

Quantitative real-time PCR
Total RNA was isolated using TRIzol (catalog
no. 15596018, Invitrogen) and 1 μg of RNA was
reverse-transcribed into cDNA with SuperScript III
Cells Direct cDNA synthesis system (catalog no. 46–
6321, Invitrogen). qPCR was performed with Bullseye
EvaGreen qPCR MasterMix (catalog no. BEQPCR-S;
MIDSCI) using an Applied Biosystems 7500 instru-
ment. The experiments were performed with three in-
dependent samples and confirmed reproducibility.
Gapdh was used as a control for mRNA quantity.

The ΔΔCt method was used to calculate relative
mRNA expression levels of target genes. Primer se-
quences are as follows: Gapdh: 5’ TGGAGAAAC
CTGCCAAGTATGA 3′ and 5’ CTGTTGAAG
TCGCAGGAGACA 3′; Gja1: 5’ CCTGCTGAG
AACCTACATCATC 3′ and 5’CGCCCTTGAAGAAG
ACATAGAA 3′.

Web resources
Databases
Genotype-Tissue Expression (GTEx) Portal database:

http://www.gtexportal.org
Software
seqMeta: http://cran.r-project.org/web/packages/seqMeta/
EasyStrata: https://cran.r-project.org/web/packages/

EasyStrata/
PLINK 1.9: https://www.cog-genomics.org/plink
SNPTEST v2.5.4: https://mathgen.stats.ox.ac.uk/genet-

ics_software/snptest/snptest.html
GWAMA v.2.2.2: https://www.geenivaramu.ee/en/tools/

gwama

Additional files

Additional file 1: Table S1. Cohort characteristics. Table S2. Single SNP
meta-analyses. Table S3. Sex-stratified analyses. Table S4. SKAT analyses.
Table S5. T1-burden analyses. Table S6. ADAMTS6 variant details. Table S7.
Cardiac phenotype distribution in Adamts6 mutant mice. (XLSX 475 kb)

Additional file 2: Figure S1. Manhattan plot for European and African-
American ancestry single variant analysis. Figure S2. Quantile-quantile
plot for European and African-American ancestry single variant analysis.
Figure S3. Manhattan plot for EA single variant analysis. Figure S4. QQ
plot for EA single variant analysis. Figure S5. Manhattan plot for AA sin-
gle variant analysis. Figure S6. Quantile-quantile plot for AA single variant
analysis. Figure S7. Miami plot European and African-American ancestry
sex-stratified single variant analysis. Figure S8. Quantile-quantile plots for
European and African-American ancestry sex-stratified single variant ana-
lyses. Figure S9. Normal morphology of adult Adamts6 heterozygous
hearts. (DOCX 4290 kb)

Additional file 3: Video S1. (Quicktime) Video to illustrate the DORV
phenotype finding in an Adamts6 mutant heart. (MOV 1983 kb)
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