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Abstract

Genome-wide methylation arrays are powerful tools for assessing cell composition of complex mixtures. We compare
three approaches to select reference libraries for deconvoluting neutrophil, monocyte, B-lymphocyte, natural killer, and
CD4+ and CD8+ T-cell fractions based on blood-derived DNA methylation signatures assayed using the Illumina
HumanMethylationEPIC array. The IDOL algorithm identifies a library of 450 CpGs, resulting in an average R2 = 99.2
across cell types when applied to EPIC methylation data collected on artificial mixtures constructed from the above cell
types. Of the 450 CpGs, 69% are unique to EPIC. This library has the potential to reduce unintended technical differences
across array platforms.
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Background
DNA methylation microarrays have become a widely
utilized tool for epigenome-wide association studies
(EWAS), including expanded use in studies investigating
the association between DNA methylation with environ-
mental exposures, and in the setting of case-control and
longitudinal studies [1, 2]. Peripheral blood is the most
commonly used biospecimen for these analyses primarily
because it is easily accessible through a minimally invasive
procedure, although some emerging evidence suggests
that some specific DNA methylation changes in blood
may reflect pathological states in target organs not easily
or safely accessible by biopsy [3]. Finally, DNA methyla-
tion profiles in blood may, in some instances, summarize
information of systemic exposures or diseases where cells
from a single organ or tissue cannot be specifically

assessed [4]. While some of the observed changes in DNA
methylation reported in EWAS reflect induced epigenetic
alterations within the constituent cells, others may reflect
coordinately induced changes in the proportions of
leukocyte subtypes in circulation that underlie or contrib-
ute to the pathophysiologic process. Both reference-based
and non-reference-based techniques have been used to
control the effect of cell heterogeneity, and thus possible
confounding, in different studies, and their specific appli-
cations have been detailed elsewhere [5, 6]. Deconvolution
techniques, such as constrained projection/quadratic pro-
gramming (CP/QP) [7], provide a framework for estimat-
ing the relative proportions of blood cell types using
blood-derived signatures of DNA methylation. So-called
“deconvolution estimates” can then be used in down-
stream statistical models to adjust for the potential con-
founding effects of cell composition [4, 7–9], or examined
independently to determine their association with risk or
exposures [10–12]. Indeed, as in other general clinical ap-
plications, the ratio of myeloid to lymphoid lineages (neu-
trophil to lymphocyte ratio (NLR)) can be reconstructed
in archival whole blood DNA samples measured with
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methylation arrays using different deconvolution approaches
[11, 12]. Furthermore, while complete blood cell counts
(CBC) are sometimes concurrently collected, deconvolution
algorithms allow for estimation of lymphoid-specific sub-
populations (e.g., B cells, CD4(+) T, CD8(+) T and natural
killer (NK) lymphocytes), approximating the results of cell
flow sorting without the need of additional sample input.
This strategy helps to correct for inter-individual variation,
lineage relationships (changes in the myeloid versus lymph-
oid ratio mean), and potential effects of prominent methyla-
tion differences in general cell subpopulations.
Current analysis pipelines for estimating the propor-

tions of leukocyte subtypes in adult blood are based on
samples from six adult males that were purified with
flow cytometry and profiled for DNA methylation using
the Illumina HumanMethylation450K platform (450 K
array) [13]. As the 450 K array is now the predecessor to
the recently released Illumina HumanMethylationEPIC
array (EPIC array), an outstanding question relates to
accuracy of cell deconvolution of peripheral blood
measured on the EPIC array using existing 450 K refer-
ence methylation signatures. The EPIC array interrogates
> 860,000 CpG sites, roughly twice the number of CpGs
contained on the 450 K array, with additional genomic
content in enhancer regions and DNase hypersensitive
sites (DHS), which are important in hematopoietic de-
velopment and differentiation [14, 15]. In this work, we
extend the available reference library for deconvolution
of blood cell proportions using the EPIC array with the
goal of both improving the accuracy of cell composition
estimates and overcoming potential technical differences
in platforms [16, 17]. Using antibody bead sorted neu-
trophils, B cells, monocytes, NK cells, CD4+ T cells, and
CD8+ T cells, we measured DNA methylation with the
850 K EPIC DNA methylation array and applied an
iterative algorithm for Identifying Optimal Libraries
(IDOL) from leukocyte differentially methylated regions
(L-DMR) that improves the accuracy and efficiency of
cell composition estimates obtained by cell mixture
deconvolution [18]. We then compared the performance
of cell estimates obtained using the EPIC platform and
optimized library to the now unavailable 450 K array in
artificial blood mixtures with predefined cell proportions.

Results
The FlowSorted.Blood.EPIC dataset contains information
from neutrophils (Neu, n = 6), monocytes (Mono, n = 6), B
lymphocytes (Bcells, n = 6), CD4+ T cells (CD4T, n = 7, six
samples and one technical replicate), CD8+ T cells (CD8T,
n = 6), natural killer cells (NK, n = 6), and 12 DNA artifi-
cial mixtures (labeled as MIX in the dataset). Across sam-
ples, the average purity reported in the control flow
sorting (after antibody-linked magnetic bead sorting) was
95% (range 88 to 99%), with Mono having the lowest

purity across the six cell subtypes (Additional file 1: Figure
S1). Individual sample cell purity is reported in the pheno-
type table in the FlowSorted.Blood.EPIC file. We explored
potential genetic clustering using the ethnicity and the 59
control SNP probes included in the array. A striking
clustering was observed when grouping for larger ethnic
groups (Additional file 1: Figure S2). Using a principal
component regression analysis, the first 20 principal
components were tested against potential confounders
(Additional file 1: Figure S3). Each of the first five princi-
pal components were significantly (P < 0.01) associated
with cell type composition. Other potential confounders,
including body mass index (BMI; P < 0.01), subject weight
(P < 0.01), age (in years; P < 0.01) or sex (P < 1 E-04) were
only accounted for in the sixth to eleventh principal com-
ponents, and smoking was significant only with the 12th
component (P < 0.05). Cell purity was associated with the
ninth principal component (P < 0.05). In contrast to what
was observed using the genetic information, ethnicity was
not significantly associated with any of the top 20 principal
components.
We used three deconvolution methods for comparison

(see “Methods” for details): 1) the current commonly used
450 K reference (Reinius et al.) [13] using the automatic
selection to identify the L-DMR library in the minfi Bio-
conductor package [19]; 2) our new EPIC reference using
the automatic selection to identify the L-DMR library in
minfi; 3) our new EPIC reference using IDOL selection to
identify the L-DMR library [18]. The automatic selection
picks the top 50 hyper- and hypomethylated probes for
each cell type (600 probes total), while the IDOL method
identified 450 probes as the optimal number of probes for
deconvolution (Additional file 1: Figure S4). The probes
selected by the various methods are compared in Fig. 1.
Only 26 probes overlapped across the different methods.
A comparison of the selected probes, including the pro-
portion per genomic context and probes in Phantom5 en-
hancers and DHS, is provided in Table 1. The majority of
the probes selected for deconvolution using the new EPIC
array were not present on the previous 450 K array; 66%
of the probes selected using the automatic selection
method and 69% of the probes selected with IDOL were
unique to the EPIC array. As expected, more probes in
the open sea were selected using the new reference library
(80 and 76% using the automatic and IDOL methods,
respectively, compared to 57% using the 450 K reference).
In addition, approximately twice as many Phantom5
enhancer sites were selected using the new EPIC platform
with the automatic (18%) and EPIC methods (16%) com-
pared with the Reinius [13] reference probe set from the
450 K platform (9%).
Once we determined the probes for cell type estima-

tion, we used the minfi modified Houseman constrained
projection approach [7] to estimate the cell composition
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of 12 samples, spread across two sets of artificially re-
constructed mixtures. As the specific amount of DNA
per cell type in each mixture was known, we compared
our estimate of cell proportions to the amount of DNA
represented by that cell type in each of the artificial
mixtures (Fig. 2a, Additional file 1: Table S1). The R2

(coefficient of determination) values were > 86% across all
cell types and across the three tested methods (Additional
file 1: Figure S5). However, we consistently obtained better
cell type proportion estimates (higher R2 and lower RMSE
(root mean square error)) when using the L-DMR library
generated with the IDOL method from EPIC platform

methylation data, and the variance of our estimates was
consistently lower (Fig. 2b, Additional file 1: Figure S5).
For all the cell types, except CD4T, the R2 was over 99.7%.
The lowest R2 estimate from applying the IDOL method
to the EPIC platform data was for CD4T (R2 = 95.5%).
The observed versus expected estimate for CD4T was
slightly better when using the 450 K L-DMR library (R2 =
98.1%), and performance was worse using automatic selec-
tion with data from the EPIC platform (R2 = 86.0%).
Although the results are highly correlated to the actual
proportion of DNA in the artificial mixtures when using
the Reinius [13] 450 K reference L-DMR library, the

Fig. 1 Comparison of L-DMR libraries among automatic selection in minfi and the IDOL algorithm for optimization. a Reinius reference dataset [13]
probes from the 450 K array (n = 600 CpGs). b Probes selected from the new reference samples measured with the EPIC array (n = 600 CpGs). c L-DMR
library derived from IDOL using the EPIC array (n = 450 CpGs). d Overlapping of the probes of the three methods. DHS DNase hypersensitive sites
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estimates showed increased variability compared to esti-
mates obtained using the EPIC reference L-DMR library
(Fig. 3). Importantly, the magnitude of the variance was
strongly significantly lower using IDOL compared to com-
panion automatic methods (Bartlett test P = 7.60 E-26).
As a sensitivity analysis, we compared the results of the

IDOL library using CP/QP (minfi method) versus two
additional deconvolution methods: 1) CBS-CIBERSORT, a
support vector machine non-constrained projection; and
2) and Robust Partial Correlation (RPC) a linear
non-constrained projection using the methods described
by Teschendorff et al. and available in the R package
EpiDISH [14]. Using a paired t-test, we compared the true
values (fraction of cell DNA in the artificial mixture)
versus the estimates obtained by the three methods; the
global mean differences for all the cells were not statisti-
cally significant (P > 0.05 for the three tests). The paired
mean differences were analyzed using Bland-Altman plots
(Additional file 1: Figure S6). Subtle, less than 2%, mean
differences were observed in the cell by cell estimate com-
parisons across each of the deconvolution methods.
Across the three deconvolution methods, there were no
statistically significant differences between the true values
for CD8T cells and their estimated fraction (P > 0.05). RPC
mean estimates were closer to the true values for CD4T,
though CBS underestimated CD4T (mean difference =
− 0.8%), and CP/QP overestimated CD4T (mean dif-
ference = 1.0%). RPC estimates were also closer to the
true Bcell values, whereas both CBS and CP/QP

overestimated this cell type (mean differences = 0.6
and 0.4%, respectively). NK cells were slightly under-
estimated using CBS (mean difference = − 0.3). All
three methods overestimated monocytes by a small
percentage that was statistically significant (P < 0.05).
The lowest mean difference in monocytes was ob-
served with CP/QP (0.5%), followed by RPC (0.7%)
and CBS (1.6%). CBS outperformed RPC and CP/QP
for neutrophil estimation (P > 0.1), and both CP/QP
and RPC underestimated neutrophils (mean differ-
ences = − 1.27 and − 1.66%, respectively).

Pathways in the selected EPIC IDOL library
The probes present in the new EPIC IDOL L-DMR library
were tested for enrichment using missMethyl and the
Gene Ontology (GO) and the Gene Set Enrichment Ana-
lysis (GSEA) set 7 (immune related) v.6.1 pathways. In
total, 375 GO pathways (299 biological processes, 31 cell
components, and 45 molecular features) and 181 GSEA
set 7 pathways were statistically significant (false discovery
rate < 0.05) after array bias correction (Additional files 2
and 3). Among others, several GO pathways were tracked
to the parent GO terms response to wounding (e.g., in-
flammatory response, defense response), T-cell activation
(e.g., T-cell activation) and leukocyte proliferation. The
GSEA pathways included pathways related to the different
six cell types and other cells derived from the six cells
included in the database.

Table 1 Genomic context of CpG sites selected for each L-DMR library approach

Automatic selection 450 K Automatic selection EPIC IDOL EPIC Pa

Probes (n = 600) (n = 600) (n = 450)

N(%) N(%) N(%)

CpG present on 450 K array 600 (100) 203 (34) 140 (31) 7.50E-29

Enhancers (Phantom5) 53 (9) 108 (18) 70 (16) 3.13E-69

DNase hypersensitive sites 452 (75) 467 (78) 328 (73) 6.66E-147

Genomic context

CpG island 47 (8) 24 (4) 10 (2) 4.35E-62

Shores 116 (19) 55 (9) 63 (14)

Shelves 95 (16) 41 (7) 35 (8)

Open sea 342 (57) 480 (80) 342 (76)

Functional context

TSS1500 73 (12) 44 (7) 38 (8) 2.10E-102

TSS200 46 (8) 23 (4) 11 (2)

5′ UTR 76 (13) 69 (12) 46 (10)

First exon 20 (3) 16 (3) 7 (2)

Body 241 (40) 283 (47) 210 (47)

3′ UTR 29 (5) 11 (2) 9 (2)

Intergenic 115 (19) 152 (25) 128 (28)
aP is calculated from the χ2 test comparing the proportions between the three L-DMR selection methods
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Potential applications
Although any EWAS using the IlluminaHumanMethyla-
tionEPIC array could benefit from estimates derived
from the new reference library, one specific setting in
which the use of more precise cell estimates is particu-
larly beneficial includes longitudinal and/or repeated
measurement studies. Using a dataset containing periph-
eral blood DNA methylation information from one vol-
unteer, 11 repeated measurements were obtained across

350 days of observation. Although the measurements
were from a healthy male adult volunteer, we observed
an important range of variability in the cell subpopula-
tions across the different time points (Fig. 4). Specific-
ally, we observed a potential underestimation of CD8T
(− 5.5% in the 450 K estimates, P = 2.86E-05) and Bcell
(− 3.84% in the 450 K estimates, P = 1.10E-04). Further,
when examining the cell ratios (lineage relationships)
those ratios containing these cell subpopulations, and in

b

a

Fig. 2 Comparison of estimate cell proportions using constrained projection/quadratic programming (CP/QP) versus the reconstructed (true) DNA
fraction in the artificial DNA mixtures using the EPIC IDOL method. a Cell-specific DNA proportions per sample included in the two mixture
reconstruction methods (methods A and B). b R2 and RMSE using the EPIC IDOL method and the two reconstruction methods
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particular those including CD8T cells alone, were
dramatically affected (CD4T/CD8T increased 5.82
points, P = 5.76E-05; CD8T +Mono/NK were reduced
4.78 points, P = 1.28E-04). In the CD8T/Bcell ratio, al-
though the mean change was non-statistically significant,
the global variance of the ratio was affected (Bartlett test
P = 4.64E-05). Importantly, the neutrophil estimates
were preserved using any of the reference datasets,
though the neutrophil to lymphocyte ratio (NLR) esti-
mates were slightly higher using the 450 K compared to
the EPIC IDOL L-DMR library (1.97 points, P = 0.06).
Subtle changes are better captured using the new
L-DMR library. In addition, the discordance in the
CD8T and Bcell estimates using the 450 K L-DMR li-
brary compared with the EPIC array library (underesti-
mation in the reconstructed samples comparisons) was
consistent with the direction and magnitude in the error
observed when we compared the performance with the
reconstructed samples (Fig. 3).
To interrogate deconvolution using datasets from the

previous Illumina HumanMethylation450K platform, we
optimized a second set IDOL L-DMR library from our
data, measured on the EPIC platform, but including only
probes also present on the 450 K array. Restricting to
CpGs also on the 450 K array, a set of 350 probes was
identified as the optimal IDOL L-DMR library (similar
R2 and lower RMSE than libraries containing less or
more probes), 60 of which are part of our IDOL EPIC

L-DMR library. The performance of the 450 K-restricted
350 CpG L-DMR library in 12 artificial reconstructed
mixtures (GSE77797) measured with the 450 K platform
(Additional file 1: Figure S7) was consistent with the
performance of the 450 CpG L-DMR library in the EPIC
samples (Fig. 2). In particular, slightly higher RMSEs and
slightly lower R2 values were observed (Additional file 1:
Figure S7); however, the RMSEs were lower and the R2

values were higher, or similar, to those reported previously
by Koestler et al. [18] using the Reinius reference [13].
Finally, to further validate our estimation using actual

samples, we estimated the cell composition of whole
blood samples collected from six additional healthy
donors, whose DNA was run on the EPIC platform, and
compared our estimates to FACS measured cell propor-
tions collected on the same samples (GSE112618;
Fig. 5a). We also deconvoluted six publicly available
samples with available FACS information arrayed using
the 450 K platform (GSE77797; Fig. 5b), and in five of
the 11 samples in our longitudinal dataset with FACS
information at the time of the sample collection (years
2011 and 2012), we compared our estimates of cell com-
position in archival DNA samples arrayed using the
EPIC platform to the corresponding FACS measured
proportions (GSE110530; Fig. 5c). In all three datasets,
RMSEs were less than 2.0 for all cell types (Fig. 5). The
least accurate estimations were observed in the granulo-
cyte/neutrophil fractions, where increased accuracy was

Fig. 3 Observed estimates of absolute error by deconvolution method per cell type (top panel) and global per method (bottom panel)
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observed when comparing the total granulocytes vs neu-
trophil estimates compared to the total neutrophils vs
neutrophil estimates. In particular, in Fig. 5a, the RMSE
for neutrophils was 1.91, whereas when we instead used
total granulocytes (the sum of neutrophils, eosinophils,
and basophils), the RMSE was reduced to 0.92.

Discussion
Here, we offer a new DNA methylation reference library
from the Illumina EPIC array for six adult blood cell
subtypes. Using artificial mixtures with fixed proportions
of purified cell DNA, this library offers more precise re-
sults in terms of the cell estimations obtained through
constrained projection compared to those using the pre-
vious 450 K reference library. Although the statistical
differences are subtle numerically, the global increased
precision may help to control the confounding of cell
subpopulations in studies using adult peripheral blood.
In our approach, we suggest that optimized probe selec-

tion using IDOL may also help to increase precision and
reduce noise compared to larger probe lists based solely
on t-statistic ranking of cell-specific hyper- and hypo-
methylated CpGs. Nevertheless, even when using the

more extended automatic selection approach, the global
results are similar, albeit less precise. Furthermore,
although the results were statistically similar using the
previous 450 K reference library, our results suggest that
this L-DMR library was less precise in their estimations.
The increased coverage of the new EPIC array may

also include additional important genomic areas for
hematopoiesis and immune cell development. Although
IDOL relies on an algorithmic approach for the selection
of probes, the output L-DMR library contains probes
associated with critical biological pathways in immune
development and differentiation. Through its iterative
selection of CpG loci that optimize prediction perform-
ance across the six leukocyte subtypes, the IDOL
algorithm identifies critically sensitive and specific differ-
entially methylated sites that populate the final deconvo-
lution library. Included among the cell-specific output
are loci that figure prominently in established leukocyte
biology, as well as others that are less well described.
Examples of the former are loci that reside in genes pre-
sented in Fig. 6. BLK (B lymphoid tyrosine kinase) is well
established in B-cell antigen receptor signaling and
B-cell development [20]. CD8A (CD8 alpha subunit) is a

Fig. 4 Comparison of the longitudinal assessment of cell type proportions and cell ratio changes using DNA methylation data and two different
reference L-DMR libraries (EPIC IDOL and 450 K)
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cell defining co-receptor for cytotoxic T-cell receptor–
MHC–antigen complex response [21]. Although this
molecule is also expressed in approximately 40% of NK
cells [22], the use of this marker in conjunction with
other probes help to differentiate this specific cell type.
NFIA (nuclear factor 1 A transcription factor) in concert
with miR-223 is a crucial player in the molecular
circuitry controlling human granulopoiesis [23, 24].
IDOL also selected loci in the RPTOR gene (regulatory
associated protein of MTOR) to discriminate CD4T
cells. Metabolic reprogramming mediated by RPTOR is
emerging as essential in T helper cell differentiation
[25]. In previous studies, a different set of CpGs related
to RPTOR have been associated with inflammatory
markers in CD4T [26]. Interestingly, SLFN5 (Schlafen
factor 5 protein) demethylation strongly delineates
monocytes from neutrophils and other cell types. Schla-
fen family proteins are alpha interferon-inducible growth
and cell cycle regulatory proteins but have no known
function in monocyte biology [27]. Finally, a notable
NK-specific locus was uncovered within the CLASP1

gene (cytoplasmic linker associated protein 1). CLASP
proteins are important in microtubule organization and
vesical transport [28] but a role for this gene in NK biol-
ogy has not been described. Further experimentation is
required to elucidate the mechanistic connections be-
tween specific DNA methylation events and the functional
characteristics of diverse immune cells. The present re-
sults demonstrate notable improvements in understanding
the contributions of immune cell compartments to the
substantial variation in DNA methylation observed in per-
ipheral human blood.
In non-pathological conditions, less common cell sub-

populations will probably be estimated as part of the clos-
est cell in the cell development hierarchy (as observed
with the estimates of the neutrophils approximating the
total granulocytes in our FACS comparisons). However, a
limitation of the current approach is its potential vulner-
ability in pathologic conditions wherein other cell types or
cell transition states may appear in the peripheral blood.
The accuracy of reference-based cell deconvolution ap-
proaches can potentially be affected by the presence of cell

a b

c

Fig. 5 Comparison of the estimated cell proportions using constrained projection/quadratic programming (CP/QP) versus the FACS measured
fraction in EPIC and 450 K platforms. a Whole blood cell samples arrayed using the EPIC platform with known (FACS) fractions for the six main
cell subtypes. Cell estimates were obtained using the EPIC IDOL method. b Whole blood cell samples arrayed using the Illumina 450 K platform
with known (FACS) fractions for the six main cell subtypes. Cell estimates were obtained using the EPIC IDOL 450 K legacy method. c Five out of
11 observations on the longitudinal dataset run with EPIC had FACS information
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populations that are unaccounted for in cell reference
libraries. One example is the presence of nucleated red
blood cells in cord blood samples; this heterogeneous
group of erythroid cells shows a characteristic unmethy-
lated pattern, previous to enucleation [29], that could
affect the estimates in that specific age group where they
are relatively abundant (about 5% of the nucleated cells)
but disappear in the first 72 h after birth [30–32]. How-
ever, in normal conditions, independent of the age of the
subject, it is expected that cell types or states without a
direct reference methylome will be accounted for as part
of the closest cell subtype with a reference. In fact, in our
data we observed how the FACS information confirmed
that most of the variability in a longitudinal assessment of a
healthy subject was attributable to changes in the cell popu-
lation proportions. The approach described here can ac-
commodate additional normal or pathologically related cell
types, but as with all deconvolution methods additional cell

libraries and optimization procedures would need to be
applied to identify and minimize estimation bias arising
from an additional cell population. These limitations are
not unique to epigenetic approaches as conventional FACS
itself requires prior knowledge of cell characteristics for
accurate cell profiles.
This new reference library has the potential to be

widely used in the newest adult peripheral blood EWAS.
The use of an EPIC-specific reference library will elimin-
ate unintended technical differences arising from apply-
ing a reference library from a previous generation array
which may result in residual confounding or critical
technical defects which go beyond the cell heterogeneity
problem when analyzing blood samples. The use of reli-
able cell reference panels is particularly important for
longitudinal assessment of cohort datasets. Using infor-
mation from the 450 K datasets, it had been shown that
temporal trends in longitudinal studies were mainly

Fig. 6 Examples of critical CpGs for cell deconvolution selected by IDOL
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driven by changes in cell composition across time [33–
36]. The expected increase in precision using the new
reference would be especially important in this context
to control for aging-related effects changing specific sub-
populations of T lymphocytes in which a higher variability
is expected when using the previous library. Indeed, this
library may also find particular utility when additional
subtypes of leukocytes are added to the current library, as
is evidenced by the plethora of EPIC-array-specific
L-DMR loci discovered in the new analysis.

Conclusions
This new EPIC-specific reference library will reduce re-
sidual confounding arising from the use of a reference li-
brary from a previous array generation when analyzing
adult blood samples. The increased precision of using this
new L-DMR library will help in applications where subtle
changes in specific cell subpopulations may lead to higher
than expected variability, such as longitudinal studies.

Methods
In this work, we extend the available reference library
for deconvolution of blood cell proportions using the
EPIC array with the goal of both improving the accuracy
of cell composition estimates and overcoming potential
technical differences in platforms. Using magnetic sorted
neutrophils, B cells, monocytes, NK cells, CD4+ T cells,
and CD8+ T cells, we measured DNA methylation with
the 850 K EPIC DNA methylation array and applied
IDOL to identify optimal L-DMR libraries. We then
compared the performance of cell estimates obtained
using the EPIC platform and optimized the L-DMR
IDOL library to the now unavailable 450 K array in arti-
ficial blood mixtures with predefined cell proportions.
Six MACS-isolated and FACS-verified purity cell sub-

types (neutrophils (Neu), monocytes (Mono), B lympho-
cytes (Bcells), T helper lymphocytes (CD4T), T cytotoxic
lymphocytes (CD8T), and natural killer lymphocytes (NK))
were purchased from AllCells® corporation (Alameda, CA,
USA) and STEMCELL technologies (Vancouver, BC,
Canada). Cells were isolated from 31 males and 6 females,
all anonymous healthy donors. The donors had a mean age
of 32.6 years (range 19–59 years) and an average weight of
86 kg (range 65–118 Kg) and were negative for HIV, HBV,
and HBC. Women were not pregnant at the time of sample
collection, and samples were collected from donors with no
history of heart, lung, or kidney disease, asthma, blood
disorders, autoimmune disorders, cancer, or diabetes. All
donors provided written informed consent before dona-
tion. The full phenotype information is available in the
FlowSorted.Blood.EPIC package [37] and in the Gene Ex-
pression Omnibus (GEO; GSE110554) [38].
Isolation protocols are available through the commercial

websites of AllCells and STEMCELL technologies. In brief,

cells were selected using immunomagnetic labeling through
two different protocols: 1) for Neu, leukocytes were sepa-
rated using HetaSep followed by density gradient separation
and neutrophil negative selection; 2) Mono, Bcells, NK,
CD4T, and CD8T were negatively isolated from untouched
peripheral mononuclear cells using indirect immunomag-
netic cell labeling systems (CD14, CD19, CD56, CD4T, and
CD8T, respectively).
Twelve artificial mixtures were reconstructed using

DNA from the specific cell samples. Two different sets
of reconstruction mixtures, each with n = 6, were deter-
mined by randomly generating proportions from a
six-component Dirichlet distribution. The first set of re-
constructed samples (method A samples) used mixtures
of purified leukocyte subtype DNA in relatively equiva-
lent proportions across the six leukocyte subtypes. For
the second set of six samples, the proportions of DNA
for each leukocyte subtype were selected to resemble
their relative fractions in the peripheral blood of normal
human adult subjects (method B samples). A mixture
containing 1.2 μg of total DNA was estimated using the
proportions included in Additional file 1: Table S1. The
DNA from the cell sorted samples and those of the artificial
mixtures were randomized in the slide slots of the micro-
array. Sample DNA (1 μg) was bisulfite converted and proc-
essed according to the Illumina protocols at the Vincent J.
Coates Genomics Sequencing Laboratory at UC Berkeley.
The raw idat files from the EPIC methylation array

were pre-processed using minfi [19] and EnMIX [39]
for quality control using R v.3.4.3 [40]. To assess data
quality, we used a detection P value of 1E-06, three
standard deviations of the mean bisulfite conversion
control probe fluorescence signal intensity, and a mini-
mum of three beads per probe. Only 1897 CpGs had a
detection P > 1E-06 in 5% or more of the samples; how-
ever, they were not masked in the raw dataset. No sam-
ples were excluded because of low quality. The IDOL
EPIC L-DMR library is freely available in Bioconductor
as the package FlowSorted.Blood.EPIC [37] to be
adopted in downstream analyses in current analyses
pipelines. The package contains a RGChannelSet R ob-
ject generated through minfi containing 49 samples and
information on 1,051,815 probes corresponding to
866,091 CpGs using the latest annotation release by
Illumina (MethylationEPIC_v-1-0_B4). It is important
for the reader to note that the cells were purified using
an immunomagnetic procedure; the name “FlowSorted”
was kept for easy adoption and integration with previ-
ous minfi pipelines.

IDOL algorithm
For a complete description of the IDOL algorithm please
refer to Koestler et al. [18]. In brief, the IDOL algorithm
utilizes a training dataset consisting of both blood-derived
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DNA methylation data and measurements of the fraction
of each of the underlying cell types (e.g., FACs, artificial
mixtures of DNA from purified cell types of pre-specified,
known proportions, etc.) as a means to identify optimal
reference libraries for cell mixture deconvolution. A series
of t-tests comparing the mean CpG-specific methylation
between each leukocyte cell type compared to the mean
methylation across all the other cell types was conducted
to identify discriminating CpGs (e.g., L-DMRs) for each
specific cell type. Based on this analysis, CpGs were then
rank-ordered on the basis of their t-statistics and the L/2
CpGs with the largest and smallest t-statistic for each K
cell type were identified and pooled. L is a tuning param-
eter representing the number of cell-specific L-DMRs and
was set to L = 150 in our application, consistent with
Koestler et al. [18]. A candidate L-DMR library containing
the total L*K unique L-DMRs for each cell type forms the
search space for the IDOL algorithm, from which L-DMR
subsets of size < L*K are sequentially and probabilistically
selected and examined for their prediction accuracy in
deconvoluting the samples in the training dataset. The
user needs to preselect the library size in order to balance
accuracy and precision of cell composition estimates. For
the application of IDOL presented here, we considered li-
braries ranging from 50 to 800 CpGs by increments of 50,
as our previous work has shown that libraries ranging
from 300 to 600 CpGs generally yield accurate and reliable
deconvolution estimates. In the first iteration of the IDOL
algorithm, all L*K CpGs constituting the candidate library
have an equal probability of being selected to be included
in the DMR subset library. Using the randomly assembled
DMR library, the constrained projection/quadratic pro-
gramming approach [7] is applied to obtain cell compos-
ition estimates for each sample in the training dataset.
Using these predictions, the R2 and RMSE (root mean
square error) were calculated for each of the cell types
(Additional file 1: Figure S4), comparing the cell estimates
to their known proportion in each sample. One-by-one
CpGs are removed from the randomly selected DMR li-
brary, followed by computation of R2 and RMSE based on
cell composition estimates obtained using a library con-
sisting of only the remaining CpGs. This procedure allows
assessment of the contribution of each CpG in the library
in terms of its impact on the accuracy of cell composition
estimates and, in doing so, provides a basis for modifying
the probability of each CpG being selected in subsequent
IDOL iterations. This process is repeated at each iteration,
with the algorithm eventually converging on an “optimal”
library for deconvolution. Per Koestler et al. [18], we used
500 iterations in our implementation of IDOL.

Deconvolution methods
We used three different deconvolution methods to assess
the performance of the new reference library. First, we used

the estimateCellCounts function contained in the minfi
Bioconductor package [19, 41]. estimateCellCounts is an
adaptation of the Houseman et al. CP/QP method [7], in
which a raw reference library is combined and normalized
with a target dataset, followed by cell deconvolution. By
default, this method uses the FlowSorted.Blood.450 K li-
brary derived from the Reinius dataset [13] as the reference
dataset. Both the reference and target datasets are normal-
ized together using independent type I and type II probe
quantile normalization [42]. First, the default library used
for cell mixture deconvolution consists of 600 CpGs, repre-
senting the top 50 hyper- and hypomethylated CpGs,
rank-ordered based on the t-statistic obtained in compari-
sons of CpG-specific methylation between each cell type
(i.e., CD4T, CD8T, NK, Bcell, Mono, and Neu) and all other
cell types. We hereafter refer to this approach as automatic
selection 450 K. Second, we used the same estimateCell-
Counts defaults but substituted FlowSorted.Blood.450 K
with FlowSorted.Blood.EPIC as the underlying reference
dataset. Similar to the previous approach, the top 50 hyper-
and hypomethylated CpGs were identified for each cell type
and used to assemble the library for deconvolution consist-
ing of 600 total CpGs. We hereafter refer to this approach
as automatic selection EPIC. Finally, we used IDOL for
probe selection [18]. This approach dynamically scans a
candidate set of cell-specific methylation markers to find li-
braries that optimize the accuracy of cell fraction estimates
obtained from cell mixture deconvolution. Library sizes
ranging from 50 to 800 CpGs, in increments of 50, were
considered (see IDOL algorithm above for details). The se-
lected probes (n = 450, IDOL optimized L-DMR library),
plus the genomic context information, are supplied as
Additional file 4. Per each cell type the following number
of probes were selected: Bcell 71, CD4T 70, CD8T 82,
Mono 72, Neu 73, and NK 82. As both the reference and
the target were EPIC datasets, we changed the default
normalization and only used the methylumi-noob back-
ground correction [41] before the cell projection. This last
method is referred to as IDOL selection EPIC. As this
method is not included within the estimateCellCounts
function, we offer a modified function in our package
named estimateCellCounts2 which allows all the options
already included in the original function plus the use of
IDOL-customized probe selection. The estimates of the
three methods were compared against the proportion of
cell DNA included in the mixture (true value); we report
the R2 and the RMSE (residual mean standard error) for
the three methods. The absolute mean error was calcu-
lated subtracting the estimated proportions from the
reconstructed (true) fraction spiked in the sample. As a
measure of the global variance variability we used a
Bartlett test for homogeneity of the variances to com-
pare the three methods. As a sensitivity analysis we
compared the results of the EPIC IDOL library using
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CP/QP (minfi method) versus two additional deconvo-
lution methods: 1) CBS-CIBERSORT, a support vector
machine non-constrained projection; and 2) RPC (ro-
bust partial correlation), a linear non-constrained pro-
jection using the methods described by Teschendorff et
al. and available in the R package EpiDISH [14]. We
used a paired t-test to compare the true values (fraction
of cell DNA in the artificial mixture) versus the esti-
mates obtained by the three deconvolution methods.

Longitudinal dataset
A repeated measurement dataset (GSE110530) [43] was
from a male adult volunteer who provided 12 samples of
blood distributed over a period of 350 days from March
2011 to February 2012. The DNA was extracted from
whole blood within 24 h of sampling and archived at
− 80 °C. Total input DNA of 0.75 μg, as measured by
Quant-iT Picogreen dsDNA Assay (Invitrogen, Carls-
bad, CA), was prepared for each time point. Samples
were randomized across the slots of the microarray.
Bisulfite conversion and processing were performed
according to Illumina protocols using the IlluminaHu-
manMethylationEPIC array at the Vincent J. Coates Gen-
omics Sequencing Laboratory at UC Berkeley. During
quality control, one of the samples (time point 11) showed
a different SNP content pointing to a potential sample
mix-up and was excluded from this analysis. We estimated
the cell composition using the 450 K L-DMR and the
EPIC IDOL L-DMR methods and compared the mean dif-
ference and homogeneity of the variance of the estimates
between both methods using t-test and the Bartlett test.

Extension to whole blood samples and application for legacy
450 K datasets
As a potential extension and validation of our algorithm,
we used a public dataset (GSE77797) [44] containing 12
samples of artificial mixtures and six whole blood samples
with known flow-sorted fractions for the main six cell
fractions arrayed using the Illumina HumanMethyla-
tion450k platform. We optimized an EPIC IDOL 450 K
legacy L-DMR library using the same procedure described
for the EPIC IDOL L-DMR above. The resulting library
contained 350 probes present on the previous 450 K Illu-
mina DNAmethylation array generation (Additional file 5).
The estimated cell composition using this EPIC IDOL
450 K legacy L-DMR library was compared against the
reconstructed fraction or the FACS measured fraction.
We report the R2 and the RMSE for the artificial mixtures
and the RMSE for the FACS measured samples.

Validation using samples with FACS information
Three independent datasets were used for validation. We
ran six samples of healthy donors with FACS information
using the EPIC platform (GSE112618) [45]. FACS analyses

were carried out on whole blood provided by six healthy
blood donors using established methods as described in
Accomando et al. [46]. In brief, the gating strategy
included counting total leukocytes using CD45(+), granu-
locytes based on CD16 and CD15, monocytes based on
CD14, total T lymphocytes marked as CD3(+), CD4T
were CD3(+) CD4(+), CD8T were CD3(+) CD8(+), B lym-
phocytes marked as CD19(+), and NK as CD56(+). We
also compared the performance of our estimations against
six additional samples with FACS information available in
GEO which were arrayed using the Illumina Human-
Methylation450k array (GSE77797) [44]. Finally, for five of
the 11 samples of our longitudinal dataset analyzed with
the EPIC platform, we had partial FACS information. In
this latter dataset we show the CD3(−) lymphocyte frac-
tion as the sum of Bcell and NK. DNA isolated from
donor blood was stored at − 80 °C for approximately
6 years before being assayed on the EPIC array. Data are
available in the GEO (GSE110530) [43].

Test for enrichment
The IDOL L-DMR library was tested for enrichment
using the GO database version 3.5.0 with date 11/08/
2017, and the immune curated GSEA (set 7) version 6.1
using missMethyl to correct for array bias [47]. Only
those pathways containing more than ten probes of the
L-DMR library and pathways with less than 2000 genes
were selected for this analysis. Pathways with a false
discovery rate < 0.05 were considered statistically significant.

Additional files

Additional file 1: Figure S1. Estimated cell purity by flow cytometry
per cell type. Figure S2. Heatmap based on a hierarchical cluster of
purified cell types and cell mixtures based on the array SNPs. Figure S3.
Association between the top 20 principal components and potential
confounders for DNA methylation. Figure S4. Iterative testing of
different L-DMR library sizes using the IDOL optimization algorithm.
Table S1. Cell composition percentages for the artificial reconstruction
samples. Figure S5. Comparison of several probe selection methods and
estimated cell proportions using constrained projection/quadratic
programming (CP/QP) versus the reconstructed (true) DNA fraction in
the artificial DNA mixtures. Figure S6. Bland-Altman plots comparing
the mean differences between the estimated cell fraction using three
deconvolution methods and the true fraction in the artificial mixture
per cell type. Figure S7. Comparison of the estimated cell proportions
using CP/QP using an IDOL-optimized library restricted to the Illumina
HumanMethylation450K k array versus the reconstructed (true) DNA fraction
in the artificial DNA mixtures arrayed in the 450 k platform. (PDF 618 kb)

Additional file 2: Gene Ontology enrichment of the probes contained
in the L-DMR IDOL library. (CSV 28 kb)

Additional file 3: GSEA enrichment using the curated set 7 (immune
profiles) of the probes contained in the L-DMR IDOL library. (CSV 13 kb)

Additional file 4: L-DMR IDOL library. (CSV 113 kb)

Additional file 5: L-DMR IDOL 450 K legacy library. (CSV 88 kb)
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