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From forensic epigenetics to forensic
epigenomics: broadening DNA investigative
intelligence
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Abstract

Human genetic variation is a major resource in forensics,
but does not allow all forensically relevant questions
to be answered. Some questions may instead be
addressable via epigenomics, as the epigenome acts
as an interphase between the fixed genome and the
dynamic environment. We envision future forensic
applications of DNA methylation analysis that will
broaden DNA-based forensic intelligence. Together with
genetic prediction of appearance and biogeographic
ancestry, epigenomic lifestyle prediction is expected
to increase the ability of police to find unknown
perpetrators of crime who are not identifiable using
current forensic DNA profiling.
the forensic field.
Introduction
Human genetic variation provides high discriminatory
power in identifying known persons, such as perpetra-
tors of crime [1, 2]. Although less established, it can also
aid in predicting appearance traits and biogeographic an-
cestry, which is useful for finding unknown persons who
are not identifiable with standard DNA profiling [3, 4].
While the genome is typically non-informative regarding
lifelong environmental influences on the body, which
can provide forensically relevant information, the epige-
nome acts as an interphase between the mostly “fixed”
genome and the principally “dynamic” environment [5].
For example, lifelong molecular responses to environ-
mental exposure via varying DNA methylation levels at
thousands of cytosines across the genome result in indi-
vidual epigenome variation [6–10].
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In contrast to genetics, epigenetics has been explored
slowly in the forensic field [11, 12]. DNA methylation is
preferred in forensics over other epigenetic modifica-
tions (such as changes in chromatin structure or histone
modifications) for both in vitro stability and high sensi-
tivity in terms of DNA amounts required. Currently,
only a limited number of DNA methylation markers are
applied for a few forensic purposes, using technologies
that enable the analysis of a small number of such
markers. These approaches can be classified as forensic
epigenetics, and include DNA methylation profiling for
tissue determination [13], age prediction [14], and differ-
entiation between monozygotic twins [15]. The concept
of personalized epigenomics, which is already used in
medical research [16], has not yet been recognized in

Provided that scientific and technological progress in
human epigenomics continues to advance rapidly, we
envision the establishment of an “epigenomic finger-
print” [17] from crime scene traces as a promising ap-
proach to address various forensically relevant questions
that cannot be answered through genetics. We also ex-
pect that in the near future novel technologies will be
developed to allow the detection of large-scale DNA
methylation variation in forensic-type DNA for many
more forensic purposes—that is, forensic epigenomics
will emerge. These purposes are likely to include the
prediction of forensically informative lifestyle and envir-
onmental information of an unknown trace donor (Fig. 1)
to help further overcome the principle limitation of the
current use of DNA in human forensics. Current foren-
sic DNA profiling is completely comparative; that is, it
aims to match DNA profiles from crime scene traces
with that of known suspects, such as those included in
forensic DNA databases [1, 2]. In consequence, perpetra-
tors whose DNA profiles are unknown to the investiga-
tors cannot be identified. Together with current
emergence of genetic prediction of appearance traits [3]
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Fig. 1 Questions to which forensic epigenomics is envisioned to provide answers in the future
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and biogeographic ancestry [4], as well as epigenetic pre-
diction of chronological age [3], epigenomic prediction
of lifestyle and environmental exposures will allow fur-
ther characterization of unknown perpetrators from
DNA, which is useful in criminal cases where no DNA
profile match has been obtained. If put into practice,
such broadened DNA-based intelligence is expected to
guide police investigations towards the most likely group
of potential suspects.

Forensic requirements of epigenetic/epigenomic
analysis
There are several requirements of forensic DNA ana-
lysis, which are determined by the low quality and quan-
tity of DNA that is typically available from crime scene
traces, which has consequences for the type and number
of markers that can be analyzed, and the technology that
can be used. These requirements also apply to forensic
epigenetic/epigenomic analyses (Fig. 2). Moreover, there
are additional technological challenges given the quantita-
tive outcome of epigenetic/epigenomic analysis, in contrast
to forensic genetics analysis, which is mostly qualitative.
The limited amount of human biological material

available at crime scenes restricts the number of separate
DNA tests possible. In consequence, multiplex genotyp-
ing methods for the simultaneous analysis of several epi-
genetic markers at once are required in forensic analysis
since single markers typically do not deliver enough fo-
rensically useful information. However, currently avail-
able technologies for the simultaneous analysis of a large
number of epigenetic markers, such as DNA methyla-
tion microarrays and whole-genome bisulfite sequen-
cing, are not suitable for forensic trace analysis because
of the large input amounts of high-quality DNA they re-
quire. At the same time, current epigenetic analysis tech-
nologies that are able to deal with low-quality/quantity
DNA, such as bisulfite pyrosequencing, methylation
quantitative PCR, and EPITYPER®, are limited in their
multiplexing capacities (fewer than 20 markers), which
are often insufficient to fully address a forensic question
of interest [18].
Amounts of DNA obtained from crime scene traces are

often low, typically in the picrogram–nanogram range.
Therefore, highly sensitive technologies are needed in fo-
rensics to allow for reliable detection of DNA variation,
including DNA methylation levels. Methods such as
methylation SNaPshot with (albeit limited) multiplexing
capacity currently have sensitivities down to a few



Fig. 2 Challenges and considerations in developing and implementing forensic epigenomics. CpG cytosine-phosphate-guanine, pg picogram
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nanograms of DNA input per PCR [13, 19]. However,
most current epigenetic methodologies require bisulfite
conversion prior to marker analysis; the efficiency of con-
verting unmethylated cytosines into uracils strongly de-
pends on the DNA input. Typically, bisulfite conversion
kits require a minimum of 50–200 ng DNA for reliable
performance. Reduced DNA input leads to increased tech-
nical variation and thus an increased error range of the
subsequent DNA methylation analysis. Highly sensitive
technologies allowing for simultaneous analysis of large
numbers of DNA methylation markers from low-quality/
quantity DNA do not yet exist.
Crime scenes traces can consist of different cell types.

While cell/tissue-type composition is mostly not restrict-
ive in genetic analysis, it can be challenging in epigenetic
analysis. Forensic epigenetic tests have to work equally
well in all forensically relevant cell or tissue types or, if
that is impossible, need to be tailored to specific tissue
types, requiring tissue-type determination prior to epi-
genetic analysis. Some DNA methylation sites can show
substantial differences between different tissues, which
needs to be considered when applying previously estab-
lished predictive marker sets and prediction models to a
trace, which can be of a different tissue origin [20, 21].
Even if a large number of epigenetic markers provide
tissue-independent information, such as for age prediction
[22], reducing the number of markers due to technical
constrains in forensic DNA analysis can lead to tissue spe-
cificity effects such as in forensic age prediction. Deter-
mining forensically relevant tissue types can be achieved
via tissue-specific mRNA or microRNA markers [23, 24],
which is already established in forensics. If the conclusion
of the epigenetic analysis depends on a direct comparison
between crime scene material and reference samples, sam-
ples from the same tissue type should be used. However,
additional challenges in interpretation can be encountered
when analyzing heterogeneous forensic-type samples such
as whole blood, consisting of different cell types with dis-
tinct epigenomes [25, 26].
When it comes to predictive DNA analysis in forensics

(and beyond), the accuracy of predicting a trait from
DNA, including methylation markers, should be as high
as possible. Prediction accuracy should be investigated
via different approaches and estimated via different mea-
sures in as many test samples as possible. Potential con-
founding DNA methylation effects [27] caused by a
combination of factors such as age or environmental ex-
posures should also be taken into account during inter-
pretation, and properly tested before implementation.
However, forensic DNA prediction is generally applied in
cases where the police have little or no knowledge of the
identity of the trace donor and how to find him/her.
Hence, although high prediction accuracies are generally
preferred in forensic DNA prediction, including when
DNA methylation markers are used, lower accuracies may
be accepted given what is known in a specific case and if
other information available to the police already has low or
unknown accuracies (for example, eyewitness statements).

Current progress in forensic epigenetics
What type(s) of cells does the trace contain?
Along with standard DNA profiling, knowledge regarding
the cell or tissue type(s) of the crime scene trace can pro-
vide crucial information for crime scene reconstruction,
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since specific tissues indicate particular types of activity.
Since epigenetics is involved in cell differentiation and
gene expression regulation [28], identifying forensically
relevant body fluids is possible using differentially methyl-
ated loci. Frumkin et al. [29] first highlighted the potential
of epigenetic markers for semen trace determination. Sub-
sequently, several studies have been published using vari-
ous DNA methylation loci and analysis methods for
different forensically relevant tissues [30–33]. Reported
genes include FOXO3 and EFS for blood [32, 34],
SLC12A8 and BCAS4 for saliva [30, 34], DACT1 and
C12orf12 for semen [31, 35], LOC404266 and HOXD9 for
vaginal secretion [34], and SLC26A10 and LTBP3 for men-
strual blood [13]. The reliable epigenetic determination of
more complex body fluids such as menstrual blood can be
more challenging, mainly due to the combination of dif-
ferent cell types and smaller methylation effects of cur-
rently proposed markers [13]. Until now, the only
commercial test based on DNA methylation exists for
seminal fluid [36, 37]. Non-commercial multiplex test sys-
tems targeting several tissues simultaneously have been
published recently [13, 38], but currently have not been
validated for acceptance in court. Despite the very recent
introduction of such tests to criminal casework in some
countries (for example, South Korea), future research re-
garding each marker’s specificity across a wide range of
tissues, inter- and intra-individual variation, in vitro stabil-
ity, gender-, age- and/or ancestry-associated influences, as
well as full assessment and validation of the proposed
multiplex forensic systems, remains necessary to fully es-
tablish practical usefulness in criminal casework.

How old is the unknown trace donor?
Predicting the lifetime age of an unknown trace donor at
time of trace deposition can help police to focus their in-
vestigation to find unknown perpetrators [3]. DNA
methylation is strongly affected by ageing [22, 39, 40].
Picking-up on genome-wide scans using DNA methyla-
tion microarrays [22, 41, 42], forensic (epi)geneticists
have started to establish age-associated sites as bio-
markers of lifetime/chronological age at genes such as
ELOVL2, C1orf132, TRIM59, FHL2, ASPA, SCGN, and
CSNK1 [14, 43–53]. Although an epigenetic age predic-
tion model has been proposed that behaves similarly
across human tissues [22], the number of CpGs used
(353) is too large for multiplex-based trace analysis with
current technologies. When reducing the number of age
markers, tissue-specific effects of epigenetic age predic-
tion are evident, so that tissue-specific marker sets and
models need to be developed. Forensically motivated age
prediction models based on a small number of CpGs
have been built mainly for blood [14, 49, 50, 52–54] and
less so for saliva [46, 55–57], semen [58], and teeth [44],
which deliver age prediction with errors of around
±5 years. However, gender-specific differences and
higher errors for old, very young, and diseased individ-
uals (for example, those suffering from age-associated
conditions [59]) can be expected [14, 44, 48, 52, 53],
which are attributed to the fact that, instead of lifetime
age (that is, number of years alive), these epigenetic
markers predict biological age (that is, a measure of age-
related changes in body function or composition associ-
ated with one’s ageing rate). Previous studies [48, 53]
have highlighted greater variation in known age versus
age predicted with DNA methylation markers for chil-
dren and elderly people, relative to medium-aged people.
This may illustrate the discrepancies between biological
and chronological age as detected with epigenetic
markers, which are expected to be larger during devel-
opmental lifetime and with advanced age compared with
medium-aged people. However, most perpetrators of
crime are of medium age. Forensically suitable commer-
cial solutions are currently not available despite the in-
creasing interest from police forces worldwide. However,
we expect that further research and validation studies
will identify robust markers that eventually will be
pooled together in multiplex solutions for age estimation
from crime scene traces.

Which twin is the trace donor?
Monozygotic (MZ) twins cannot be individually identi-
fied by standard forensic DNA analysis because they
share the same DNA profile, which is a drawback for
law enforcement. For a service based on ultra-deep
whole genome sequencing to detect very rare somatic
mutations, a company charges tens of thousands of
Euros for a single twin case, which does not guarantee
success [60]. Genetically identical MZ twins are some-
times discordant for certain phenotypes [61], indicating
epigenetic involvement [6], and several studies have
demonstrated that there is considerable epigenetic vari-
ation within MZ twin pairs. Although some studies have
explored the value of epigenetic profiling in forensically
discriminating MZ twins [62, 63], it is not yet fully
established whether the observed twin-to-twin differ-
ences are twin pair-specific, or might be universal and
applicable across twin pairs, as would be preferred. Re-
cently, a first attempt was made to demonstrate the
feasibility of differentiating between MZ twins using fo-
rensic epigenetics [15]. This study showed that most,
but not all, twin-differentiating CpG sites (which were
identified using genome-wide screening technologies in
reference-type blood DNA) could be replicated by tar-
geted methods that are suitable for forensics in trace-type
DNA from bloodstains, highlighting technical challenges
[15]. Another key issue that remains unclear concerns the
number of epigenetic markers required to achieve statisti-
cally sound identification of individual MZ twins, which is
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an issue as current screening technologies are not suitable
for trace analysis. We expect that additional research test-
ing the stability of DNA methylation differences over time
and different tissues, technologies, and approaches will de-
termine whether differential DNA methylation is indeed a
suitable approach for addressing this forensic question.

Future perspectives of forensic epigenomics
Is the unknown trace donor a smoker?
Despite tobacco smoking being widely recognized as
having negative health outcomes, a large proportion of
the world population still smokes: for example, 19–32%
of Europeans [64]. The ability to predict smoking habits
from trace DNA would be highly informative in charac-
terizing an unknown trace donor, and thus useful in
guiding investigations. Smoking is known to cause DNA
damage and telomere shortening [65], and also epigen-
etic changes, which are caused by effects on DNA meth-
yltransferase expression [66] and DNA methylation
patterns [67]. Epigenetic effects of tobacco smoking are
also related to cumulative smoke exposure (pack-years)
and associated with time since quitting [68–70]. The
first epigenome-wide association study (EWAS) in blood
aimed to identify differential DNA methylation associ-
ated with smoking found a single CpG marker (F2RL3)
[67]. Following more than 18 additional EWASs in thou-
sands of individuals, various smoking-associated CpGs
have been recognized in several genes, including AHRR
[71–79], ALPP2 [72–74, 76–78, 80, 81], GFI1 [73, 74, 76,
82], GPR15 [74, 75, 81], and MYO1G [73, 76, 81, 83].
However, the observed per-site DNA methylation differ-
ences are relatively small (usually less than 20%) [84].
While most studies have been performed in blood,
smoking-associated CpGs have also been identified in
other tissues such as lung [72, 79]. While epigenetic ef-
fects are persistent for long periods after smoking cessa-
tion, some are reversible [68, 77, 85]. One preliminary
attempt to predict smoking habits using epigenetics
tested a model combining four CpGs for the ability to
differentiate between never (n = 120) and former
smokers (n = 45), achieving a prediction accuracy of area
under the curve (AUC) of 0.83 (AUC values range be-
tween 0.5 meaning random prediction and 1.0 meaning
completely accurate prediction) [86]. Besides further in-
creasing the prediction accuracy by adding more
smoking-predictive CpGs, additional challenges should
be considered in the future, such as population-specific
effects [76, 87]. One important aspect here is the effect
of maternal smoking during pregnancy (for example,
10.7% of pregnant American mothers have been re-
ported to smoke [88]), which could cause similar epigen-
etic changes in the offspring, lasting into puberty and
even adulthood. The influence of passive smoking,
which could also impact the epigenome, needs to be
considered as well in future practical applications of epi-
genetics to smoking prediction.

Is the unknown trace donor a drinker?
Alcohol intake highly varies between countries and indi-
viduals (more than one-fifth of European adults experi-
ence weekly “binge” drinking [89]), and predicting
drinking habits can be useful for investigative purposes.
Forensic toxicological tests for alcohol metabolite detec-
tion exist for blood, urine, and hair, but do not allow in-
ferences regarding regular drinking habits (i.e., how
often and how much alcohol is consumed). Due to both
genetic [90] and environmental factors [91], differential
DNA methylation is evident in regular alcohol con-
sumers versus non-drinkers. A significant increase in
global blood methylation has been observed in chronic
alcoholics [92], while genes such as the dopamine trans-
porter [93] have been shown to be differentially methyl-
ated in alcohol-dependent individuals, although this
finding has not yet been replicated in other studies [94].
The first EWAS for alcohol dependency revealed numer-
ous epigenetic markers associated with alcohol metabol-
ism [95], the majority of which (1702 CpGs, p < 0.005)
were hypomethylated in alcoholics versus non-drinkers
(<17% difference). This finding, however, contradicts
alcohol-associated hypermethylated genomes reported
elsewhere [92, 96]. In another study, 865 hypomethy-
lated and 716 hypermethylated CpGs were identified
[97]. In the largest meta-analysis available, five CpGs
were highlighted to explain a substantial proportion
(5.2–15%) of interindividual variance in alcohol con-
sumption and were thus proposed as biomarkers for
heavy alcohol drinking [98]. A preliminary prediction
study achieved AUC > 0.90 based on 144 CpGs [98], a
number that from a forensic standpoint is challengingly
high due to limited crime scene material and current
method capabilities. More candidate markers have been
revealed recently, but with effects as small as 1–5% [99].
Alcohol-dependent epigenetic signatures are partly re-
versible upon abstinence [99] and, as with smoking, pre-
natal maternal alcohol intake (which occurs in 9.8% of
pregnancies worldwide, 2017 [100]) alters gene-specific
methylation in placental cord blood [101], and this could
potentially lead to false-positive predictions. We expect
that future research will identify robust markers to be
included in a forensically suitable prediction tool.

Is the unknown trace donor an illicit drug user?
Illicit drug use is prevalent in adults, ranging from 1 to
41% depending on the country [102], and is therefore
relevant in characterizing unknown trace donors. Com-
monly used drugs include cannabis, cocaine, and amphet-
amines. Depending on the country’s legal framework,
thousands of drug-related offences occur annually [102].
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Similarly to alcohol, forensic toxicological tests are in
widespread use; however, they do not provide information
on history and habitual use (possibly except for hair ana-
lysis). Most studies on drug-induced epigenetic changes
have been performed in animal models [103, 104], mainly
focusing on chromatin structure and histone modifica-
tions [105]. Drug-induced DNA methylation changes have
been recently investigated in animal brain regions and
neural cells [106]. Global methylation levels were not dif-
ferent in mouse brain and liver following chronic heroin
or cocaine treatment [104], but in human brain results
were contradictory following methamphetamine depend-
ence [107]. Applying candidate gene approaches, only can-
nabis and opioid epigenetic effects have been studied in
blood thus far. Cannabis-dependent individuals demon-
strated altered blood CB1 methylation, which is also de-
tected in cigarette smokers [108]. Almost 200 heroin
addicts showed altered blood OPRM1 methylation, but
per-site changes were small (<4%) [109] and showed
population differences [110]. These so-far small methyla-
tion differences indicate that larger numbers of individuals
need to be included in association studies; however, due to
expected difficulties in performing such studies with con-
trolled drug use by study participants, this research ques-
tion remains in its infancy. Future experiments are also
needed to determine whether epigenetic differences are
anticipated only in the brain (where the drugs’ effects
occur), or whether these are also detectable in forensically
more relevant tissues, such as blood. Finally, drug dose-
dependent and reversible effects are also expected.
Are there any diet indications for the unknown trace
donor?
Predicting an unknown individual’s diet can be of forensic
relevance, when special diets are followed (e.g., vegetarian)
or special foods are consumed that can potentially be
linked with a particular characteristic, such as geograph-
ical location, tradition, and religion. Individual staple food
comprises various major components such as fruits, vege-
tables, meat, and fish. Eventually, dietary differences are
translated into different intakes of macro- and micronu-
trients, including carbohydrates, protein, fat, vitamins, and
minerals. Nutritional epigenomics is a relatively new, but
rapidly growing, research field [111]. Micronutrients in-
cluding folate and B vitamins seem to play a key role as
secondary methyl donors [112]. One of the first
epigenome-wide studies demonstrated that prenatal ex-
posure to famine causes lifelong methylation changes
[113]. A cross-generational study identified 134 “nutri-
tion-sensitive” regions, implicated with impairments in at-
tention/cognition [114]. Comparing different eating
patterns, European vegetarians were found to have ap-
proximately 40% decreased MnSOD buccal methylation
compared with omnivores [115], while in a smaller-
scale study, plasma homocysteine levels showed a sig-
nificant correlation with global blood DNA methylation
in vegetarians [116]. Looking at specific macronutri-
ents, mercury exposure via fish consumption causes
SEPP1 hypomethylation [117], and daily intake of
roasted meat alters p16 methylation in oesophageal tis-
sue cells [118]. Dietary folate from fortified foods has
also been positively associated with LINE-1 blood
methylation [119]. Overall, diet involves complex, vari-
able patterns and processes. It is unknown whether
inter-relationships between different macro- and micro-
nutrients exist and how unique the observed epige-
nomic effects are to a specific food type or nutrient.
Nevertheless, we envision that future large-scale epige-
nomic analysis of different diet groups, such as vegetar-
ians versus non-vegetarians, may allow the construction
of prediction models that have the potential to be used
in forensic applications.
Is the unknown trace donor physically active?
Information on an unknown person’s physical activity
levels might provide insights on their body structure and
appearance, which is relevant when describing an un-
known trace donor. Physical exercise can impact the epi-
genome [120] and regulate gene expression [121]. It is
also involved in gene–environment interactions that re-
duce genetic effects on individuals’ body mass index
(BMI) [122]. Whereas cross-sectional and case–control
studies revealed no significant correlation between phys-
ical activity and global blood methylation [123], LINE-1
methylation was increased in women maintaining higher
physical activity over a long period of time [124].
Exercise-related epigenetic effects were also stronger in
elderly populations [125], diseased individuals (L3MBTL1)
[126], and in tissues such as fat (TCF7L2) [127] and skel-
etal muscle (KCNQ1) [128]. Being physically fitter or exer-
cising regularly correlates with lower cancer gene
methylation in saliva [129]. When testing the effects of
regular moderate exercise on inflammatory response via
epigenetic changes in blood, there was no effect regarding
the IL-6 [130] and p15 [131] genes, but a reduced age-
dependent ASC blood methylation was observed [131].
Thus far the effects of long-term, rather than acute, exer-
cise have been studied, so it is unknown when methylation
changes are established and become detectable in relation
to timing of exercise. This research is still at early stages
and ongoing, but future large-scale experiments including
controlled exercise regimes for study participants have the
potential to identify distinct exercise-related epigenetic
differences. Depending on the outcomes, a forensic tool
may be developed to predict whether an unknown trace
donor is physically active or not.
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What is the body size/shape of the unknown trace donor?
While predicting categorical externally visible character-
istics such as eye and hair color is already established
[132], predicting dimension-based features, such as body
height, is challenging due to their continuous quantita-
tive nature. Although the genetic component of body
height is large [133, 134], environmental factors explain
about 20% of height variation. Due to the immense gen-
etic complexity of height, despite very large genome-
wide association studies (more than 250,000 subjects,
the identified SNPs do not explain more than 27.4% of
the phenotypic variation [135, 136]. For BMI, however,
this figure is just 2.7% [137]. There is increasing evi-
dence that epigenetic variation might play a role in shap-
ing body height [138] and BMI [139]. The first study in
humans identified that 83% of height-associated genes
contain promoter CpG islands linked with gene regu-
lation, half of which had significant DNA hypermethy-
lation modules [138]. While there is currently no
published EWAS for height, studies in other species
such as Arabidopsis thaliana [140], ants [141], and
sheep [142] have identified height-associated methyla-
tion in body-size-related genes. In the case of BMI,
where EWASs have been carried out for humans [139],
birth-weight discordant twins did not show significantly
different epigenome-wide profiles [143], but three CpGs
(in the gene HIF3A) were found to be significantly asso-
ciated with BMI in a larger cohort of unrelated individ-
uals [139]. For every 10% methylation increase of
cg22891070, BMI was approximately 3% higher [139];
however, these effects were not replicated in adolescents
[144]. Following a comprehensive scan of about four
million CpGs, four BMI-associated variably methylated
regions (PM20D1, MMP9, PRKG1, and RFC5) were dis-
covered [16]. In the largest meta-analysis to date, the
BMI-associated DNA methylations levels for 187 loci
were successfully replicated in multiple tissues and eth-
nic groups [145]. In another study in CD4+ T cells, eight
additional BMI- and waist circumference-related CpGs
were identified [146]. We envision that currently identi-
fied CpGs, together with future outcomes from large-
scale epigenetic studies, may form a suitable marker
pool for a future forensic tool to predict a person’s body
height and weight, which in combination with physical
activity information can create a more detailed picture
of the physique of an unknown individual.
In which geographic region does the unknown trace
donor live?
Predicting biogeographic ancestry via small sets of gen-
etic markers is feasible in current forensic testing, at
least at the continental level [4]. However, the geo-
graphic regions where the ancestors of a person
originate from is not necessarily the same as the region
where the individual lives (residency), especially in the
current age of globalization [147]. Currently, residency
can be inferred via isotope analysis [148], but this is un-
suitable to crime scene traces. Genetic geographic popu-
lation substructure, which is the basis of genetic
ancestry inference, is caused by human migration and
positive selection via local genetic adaptation to environ-
mental factors, which occur over large periods of time
involving multiple generations. By contrast, epigenetic
geographic population substructure influenced by local
environmental factors is produced much more quickly,
and within a person’s lifetime. Giuliani et al. proposed
that the factors influencing spatial epigenetic variation
are mainly nutrients, UVA exposure, and pathogens
[149]. Distinct epigenetic changes due to chronic sun ex-
posure have been found in human skin (KRT75) [150],
while environmental chemicals such as cadmium expos-
ure via soil in Thai populations [151] and phthalate ex-
posure via household products in the USA [152] affect
gene-specific DNA methylation. Apart from metals and
organic pollutants [153], others such as water contami-
nants and airborne pollution could have similar effects.
Lifetime exposure to undesired disinfection products
formed during water treatment caused methylation dif-
ferences in 140 CpGs in Spanish individuals [154], while
mitochondrial DNA (mtDNA) methylation was altered
in Italian steel workers due to their high exposure to
metal-rich particulate matter [155]. Nevertheless, these
mtDNA methylation changes are considered minute,
since overall mtDNA methylation seems to be less than
6% [156]. Overall, we regard it as likely that, besides bio-
geographic ancestry information from genetic markers,
additional residence information via epigenetic profiling
will become available in the near future with additional
benefits for investigative use.
Are there hints about the socioeconomic status of the
unknown trace donor?
Socioeconomic status (SES) is often measured as a com-
bination of education, occupation, income, and marital
status, thus viewed as a continuous variable; it is concep-
tualized as the social class of an individual, associated
with behavioral features and disease risks [157–159].
While complex and highly variable, information about
the SES of an unknown trace donor could help police
target their investigations. Together with genetics and
physical environment, social factors also impact on epi-
genetic variation [160]. Well-defined epigenetic patterns
have been linked to both childhood and adulthood so-
cioeconomic environment [161]. Early-life SES was
found to be associated with altered methylation in three
CpG sites in blood, but the methylation effects were low
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(<5%) [162]. Following candidate gene approaches in
multiple populations, SES-associated methylation was
also reported in stress-related (AVP, FKBP5, OXTR) and
inflammation-related (CCL1, CD1D, NFATC1) genes
[163, 164]. In another study, low-SES was also linked
with altered methylation of the serotonin transporter
gene [165, 166]. Looking at global DNA methylation and
job status in particular, manual workers demonstrated
24% global hypomethylation compared with non-manual
workers [167]. Various SES-associated factors, including
family income at birth [168], adult education [168], ma-
ternal education [169], parenting [170], and status of
single parent family [168], have all been linked with al-
tered methylation at specific genomic locations. While
this research is still ongoing, following comprehensive
characterization of SES-associated effects it might be
possible in the near future to be able to translate an in-
dividual’s epigenome into clues regarding their educa-
tional, occupational, and marital status; however, distinct
predictions might be unlikely.
Ethical and societal issues of forensic epigenomics
Predicting lifestyle and environmental factors of un-
known forensic trace donors via epigenomic profiling
may raise ethical and social issues and concerns and, de-
pending on a country’s legal framework, may require le-
gislation regulations before being put into forensic
practice. DNA-based prediction of appearance traits and
biogeographic ancestry for investigative purposes (re-
ferred to as forensic DNA phenotyping (FDP) [3]) has
already given rise to such issues, and opinions between
expert scientists vary [2, 3, 171–173]. To date only a few
European countries allow FDP in forensic practice, such
as the Netherlands, UK, and France [3, 174], as well as
some states in the USA. Notably, this situation is cur-
rently changing, as policy makers in some countries,
such as Germany and Switzerland, are considering
allowing appearance and ancestry DNA testing for inves-
tigative forensic use. In other European countries, in-
cluding Spain, Sweden, and Poland, FDP can be legally
practiced as legal restrictions apply only to genetic
markers used in forensic DNA databases.
It could be argued that ethical concerns regarding

privacy protection and the right not-to-know (and thus
not wanting others to know) are less pressing regarding
the genetic prediction of obvious appearance traits be-
cause their external visibility cannot be considered pri-
vate. This reasoning may also apply to epigenetic
prediction of those lifestyle factors that are obviously vis-
ible, such as tobacco smoking, or those that are generally
viewed positively, such as physical activity. However, life-
style factors with epigenetic signatures that are generally
viewed negatively may be hidden by individuals from
public exposure, which makes privacy issues more of a
concern. Nevertheless, as previously discussed among
ethics experts, some unhealthy lifestyle factors, such as
smoking, are considered non-sensitive behavioral traits,
while others, such as alcohol drinking, belong to a mid-
dle category of “somewhat but not too sensitive” traits
[175], in contrast to those, such as use of illicit drugs,
that are legally forbidden. Some lifestyle and environ-
mental factors represent known risk factors for diseases,
where the right not-to-know can apply (regarding the
disease risk); however, based on current knowledge,
none of these factors provides a direct link with sensitive
medical information, which should make their epigenetic
prediction less problematic.
In contrast to genetic data in forensic DNA profiling,

and as with genetic data from appearance and ancestry
prediction, epigenetic/epigenomic data from lifestyle
prediction are not stored in central forensic databases.
Only the trait information (that is, the probability of dis-
playing a certain trait or being influenced by a certain
lifestyle factor), but no actual genetic/epigenetic data,
should be communicated to the police for use in investi-
gations. Ethical and societal issues of probabilistic epige-
nomic lifestyle prediction should be discussed among
interdisciplinary groups of experts, including representa-
tives with (epi)genetics, forensic, ethics, social, and law ex-
pertise, before practical applications can be considered.
Conclusions
Epigenetic applications in forensics are relatively new
and currently limited, but we expect a rapid develop-
ment towards forensic epigenomics in the near future.
While today only three forensically relevant issues are
investigated via epigenetics, we envision an expansion
towards forensic epigenomics for addressing at least
some of the investigative questions proposed here. The
extent to which such broadening of forensic epigenetics
into forensic epigenomics will happen will depend on
several factors. First, further scientific progress in cata-
loguing and understanding epigenetic signatures of life-
style and environmental factors. Second, identifying
epigenetic markers and building/validating statistical
models for accurate epigenetic lifestyle prediction. Third,
technical progress in simultaneous analysis of large
numbers of epigenetic markers from low-quality/quan-
tity DNA (potentially through new technologies such as
Oxford Nanopore sequencing) and developing/forensic-
ally validating sensitive multiplex analysis assays. Finally,
ethical and societal discussions on the benefit versus risk
of using such human epigenetic data in forensic practice
with consequent legal implementations if deemed neces-
sary. If it is eventually applied in forensic practice, epige-
nomic prediction of lifestyle/environmental factors will
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enhance DNA investigative intelligence by complement-
ing genetic prediction of appearance and biogeographic
ancestry and epigenetic prediction of lifetime age, all
aiming to guide police investigations towards finding un-
known perpetrators of crime who are unidentifiable with
standard forensic DNA profiling.
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