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Abstract

Studies of the microbiome have become increasingly
sophisticated, and multiple sequence-based, molecular
methods as well as culture-based methods exist for
population-scale microbiome profiles. To link the
resulting host and microbial data types to human
health, several experimental design considerations,
data analysis challenges, and statistical
epidemiological approaches must be addressed. Here,
we survey current best practices for experimental
design in microbiome molecular epidemiology,
including technologies for generating, analyzing, and
integrating microbiome multiomics data. We highlight
studies that have identified molecular bioactives that
influence human health, and we suggest steps for
scaling translational microbiome research to high-
throughput target discovery across large populations.
primarily target bacteria, with some crossover, whereas 18S
Introduction
Population-scale studies of the human microbiome now
have at their disposal a remarkable range of culture-
independent and other molecular and cellular biology
technologies, but the identification of elements of the
microbiome that are functionally important for human
health remains challenging. This is in part due to the
variety of tools available and the diversity of processes
that they measure: microbial community composition
[1–3], species and strain diversity [4–7], genomic ele-
ments [8, 9], transcription, translation, and metabolism
[10–12], along with the corresponding human molecular
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processes in multiple epithelial, immune, and other cell
types [13–15]. Research challenges also arise, however,
at the intersection of microbial ecology and molecular
epidemiology, as population-scale microbiome study
designs and methods that adequately account for human
variability, environmental exposures, and technical
reproducibility are also still in the early stages of devel-
opment [14, 16–18].
Existing technologies for population-scale microbiome

studies share many similarities with molecular epidemiology
techniques for human gene expression and genome-wide
association studies [19, 20]. Human-associated microbial
communities are most often profiled in terms of their com-
position, for example by sequencing the 16S ribosomal RNA
(rRNA) genes to yield phylogenetic or taxonomic profiles
(abbreviated here as 16S amplicon profiling) [21]. 16S and
other amplicon-based technologies [22] are limited in their
phylogenetic ranges; for example, 16S rRNA gene studies

or internal transcribed spacer (ITS) studies typically target
fungi. Although highly sensitive, these technologies also suf-
fer from contamination, amplification, and extraction biases
[23]. A subset of these issues are shared by whole-
community shotgun metagenomic sequencing approaches,
which can further describe the functional genetic potential of
the entire community, but do not tell us what portion of this
genetic potential is actively transcribed or translated in any
particular environment [24, 25]. Community metatranscrip-
tomics, metabolomics, and metaproteomics techniques are
emerging to link nucleotide sequence-based profiles to their
bioactive products [26, 27], as are complementary tech-
nologies such as immunoglobulin A gene sequencing
(IgA-seq), immunoprofiling, and human cell screening
techniques to jointly profile microbial and human host ac-
tivities [13, 28, 29]. When combined with culture-based
microbial characterization [30], recent advances in the
resulting experimental toolkit have greatly improved our
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ability to identify relevant components of host–micro-
biome interactions.
Translational applications of the microbiome at the

population scale, however, require careful experimental,
computational, and statistical considerations, combining
lessons learned from earlier molecular epidemiology
with challenges unique to microbiome profiling. First,
the identification of relevant human or microbial cellular
and molecular mechanisms requires sufficiently precise
technologies; if bioactivity is due to a particular micro-
bial strain or transcript, for example, it is unlikely to be
identified by amplicon sequencing. Next, the identifica-
tion of signals that are sufficiently reproducible for clin-
ical actionability requires well-powered experimental
designs and, ideally, meta-analysis among studies—both
challenging for current microbiome protocols. Many
environmental exposures and covariates, such as diet or
medications, must also be measured because the micro-
biome (unlike the human genome) can both modify and
be modified by these factors. Finally, appropriate compu-
tational and statistical methods must be used during
analysis, as many standard approaches can be prone to
surprising false positive or negative rates. In this review,
we thus detail the current best practices in this field with
respect to these challenges, delineate methods and com-
putational tools (or lack thereof ) for addressing these
challenges, and discuss potential future directions for
conducting integrated multiomics studies in microbiome
molecular epidemiology.
Microbial strain as the fundamental
epidemiological unit for microbiome taxonomic
profiles
It has become increasingly apparent that many, al-
though not all, analyses of translational activities in
the human microbiome will require the identification
and characterization of microbial taxa at the strain
level. Many current culture-independent tools profile
microbial community membership by delineating
genera or species, but microbial epidemiologists have
long recognized that not all strains within a species
are equally functional, particularly with respect to patho-
genicity. For example, Escherichia coli may be neutral to
the host, enterohemorrhagic [9], or probiotic [31], and
epidemiologists have long employed methods such as sero-
typing, phage typing, or pulse gel electrophoresis to reveal
and track the relationships between microbial strains within
single species (as opposed to communities) of interest. In-
deed, there is enormous genomic variation within E. coli
alone; studies suggest a pangenome of well over 16,000
genes, with ~ 3000 gene families present in most strains
and fewer than 2000 universal genes [32, 33]. While more
comprehensively characterized for Escherichia than for
other genera, this variability is not atypical of many micro-
bial species.
Critically, such inter-strain variation has phenotypic

consequences for human health, even in such well-
studied organisms as E. coli. For instance, the probiotic
strain E. coli Nissle was isolated during World War I
due to its ability to confer resistance to Shigella upon its
host [31], despite the close relationship of this strain to
the uropathogenic strain CFT073 [34]. Escherichia is not
unique among human commensals in having a large pan-
genome with a relatively small core. The Staphylococcus
aureus pangenome is also approximately five times larger
than its core genome [35], and this variation likewise has
important consequences in differentiating commensal
staphylococci from methicillin-resistant S. aureus (MRSA)
[36]. Even gut commensals that are not traditionally asso-
ciated with pathogenicity, such as Bacteroides vulgatus [6,
37], may show large intra-species genomic variation. Like
those of better-characterized pathogens, these genomic
differences within commensal microbe species may have
consequences for the host; for example, not only was
Prevotella copri recently correlated with new-onset
rheumatoid arthritis, but specific gene differences among P.
copri strains were also correlated with this phenotype [38].
Although strain differences can have profound implica-

tions for human health, culture-independent tools have
only recently begun to distinguish among strains during
taxonomic profiling (Fig. 1a–c). For example, amplicon
analyses are fundamentally limited in their ability to differ-
entiate strains because critical functionality may arise
from differences that occur outside of the otherwise-
identical amplified gene regions (e.g., plasmids in Escheri-
chia and Shigella). Both shotgun metagenomics and, when
possible, 16S-based approaches can now be used to dis-
criminate strains (Table 1), although both (especially the
former) require care during such analyses. Most trad-
itional operational taxonomic unit (OTU) clustering ap-
proaches for amplicon data, for example, differentiate only
among taxa above some nucleotide identity threshold
(e.g., 97% similarity). Likewise, metagenomic assembly
protocols may intentionally avoid nucleotide-level
variants. For 16S data, newer approaches [39–41] employ
novel algorithms to distinguish between biological signal
and sequencing error, and can discriminate small
sequence differences corresponding to large phenotypic
differences, such as sponge symbionts and their choice of
host [39], or the specific ecological niches of human oral
taxa [42]. Recent progress in developing bioinformatic
tools further improves this resolution, revealing strain-
level differentiation within the 16S region that can be as
small as a single nucleotide [43–45].
Algorithms for strain identification from shotgun

metagenomic sequences generally rely on one or both of
two techniques: calling single nucleotide variants (SNVs,
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Fig. 1 Strategies for detailed strain and molecular functional profiling of the microbiome in human population studies. a Culture-independent analysis
methods can now identify members of the microbiome at the strain level using any of several related techniques. This is important in population
studies as strains are often the functional units at which specific members of microbial communities can be causal in human health outcomes. b
Among different approaches, reference-based methods can require less metagenomic sequence coverage (as little as ~ 1×), but are limited to
identifying variation that is based on genes or single nucleotide variants (SNVs) related to available reference genomes. c Assembly-based methods
can additionally resolve syntenic information across multiple markers at the cost of higher coverage (≥10×, Table 1). d,e Metatranscriptomic analysis,
another emerging tool for characterizing microbiome function in human health, reveals over- or under-expression of microbial features with respect to
their genomic content, both on d the population and e the individual level. ORF open reading frame
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within a community or between community members
and reference genomes) or identifying variable regions
(such as gained or lost genomic elements; Table 1).
Community SNV identification, like microbial isolate or
human genetic profiling, requires sufficiently deep cover-
age (typically 10× or more) of every microbial strain to
be differentiated [5], but can delineate closely related
strains very precisely. SNVs can be assessed either
extrinsically, with respect to one or more reference
sequences (e.g., by mapping metagenomic sequences to
that of reference and calling SNVs) [5], or intrinsically,
by aligning sequences directly from one or more meta-
genomes and identifying SNVs among them [4]. Finally,
as microbial strains often differ dramatically in their
carriage of different core or pangenome elements or
genomic islands (unlike most populations within
eukaryote species [46]), strains can also be identified by
the presence or absence of one or more genes or gen-
omic regions [6]. This requires less sequencing depth
(and is thus sensitive to less abundant members of a
community), but can be more susceptible to noise and
unable to delineate closely related strains.
Although strain identification, characterization, and

phylogenetics are well-developed for microbial isolates
[47], the use of culture-independent amplicon or meta-
genomic sequence data to perform such tasks is still in
its infancy and can suffer from a variety of drawbacks.
Amplicon methods in particular require variation to



Table 1 Tools for metagenomic strain analysis

Tool Data
type

Requires
reference
genome?

Method to resolve ambiguous reads New strain
detection

Recommended
minimal coverage

Reference

Oligotyping 16S – – – – [42]

Long-read 16S 16S – – – – [119]

Minimum entropy
decomposition

16S – – – – [39]

OTU subpopulations 16S – – – – [40]

LEA-seq 16S – – – – [41]

DADA2 16S No Poisson modeling of sequence errors (the Divisive
Amplicon Denoising Algorithm)

Yes – [43]

UNOISE2 16S No Abundance-based identification of sequencing errors Yes – [44]

Deblur 16S No Abundance-based identification of sequencing errors Yes – [45]

Megan WGS Yes Lowest common ancestor algorithm No Not reported [120]

GSMer WGS Yes Unique strain-level markers (k-mers) No 0.25× [121]

WG-FAST WGS Yes SNVs No 3× [122]

StrainPhlAn WGS Yes SNVs within species-level marker genes Yes 10× [6]

PanPhlAn WGS Yes Unique combinations of species-level marker genes Yes 1× [6]

MIDAS WGS Yes Unique strain-level marker genes Yes Not reported [37]

Sigma WGS Yes Likelihood-based No 0.027× [123]

PathoScope WGS Yes Likelihood-based No Less than 1× [124]

ConStrains WGS Yes Inferred haplotype-like SNP profiles Yes 10× [4]

LSA WGS De novo
assembly

SVD-based K-mer clustering Yes (not
validated)

25 ~ 50× [125]

CNV-based methods WGS Yes Target gene or region copy number variation [126]

CNV copy number variation, LEA-Seq low-error amplicon sequencing, OTU operational taxonomic unit, SNP single nucleotide polymorphism, SNV single-nucleotide
variant, SVD singular-value decomposition, WGS whole-genome sequencing
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exist in the targeted region, and detecting the few vari-
ants that might exist in such short sequences requires
extremely careful data generation and analysis protocols
to distinguish biological from technical variation [39,
40]. Metagenomic strain identification is typically only
accurate for the single most dominant strain of any one
organism in complex communities, requiring extreme
sequencing depths (e.g., tens to hundreds of gigabases)
to differentiate secondary strains except when only one
or a few organisms dominate [5]. Finally, as in other
areas of microbial genomics, metagenomic strain identi-
fication is sensitive to the definition of a 'strain', which
can vary from clonality at all genomic loci (possibly in-
cluding plasmids), clonality at all sequenced locations
(possibly only within an amplified region), or allowing
some non-zero degree of nucleotide-level divergence [48].

Metatranscriptomics enables characterization of
context-specific, dynamic, biomolecular activity in
microbial communities
Taxonomic profiling, at any level of resolution, is in-
creasingly accompanied by functional profiling—pairing
a community's organismal makeup with its gene and/or
pathway catalog [9]. Metagenomic DNA sequencing,
however, yields information only regarding the commu-
nity's functional potential—which organisms, at what
abundances, might be able to carry out which biological
processes (and not necessarily which genes are being
transcribed under current conditions). Metatranscrip-
tomic RNA sequencing is arguably the first scalable,
culture-independent technology to overcome this limita-
tion, although its application to the human microbiome
at an epidemiological scale still presents unique design
and analysis challenges. Microbiome samples for meta-
transcriptomics must be collected in a manner that pre-
serves RNA for sequencing, and they are (by definition)
much more sensitive to the exact circumstances and
timing of sample collection (Box 1) [17]. The associated
protocols for nucleotide extraction are generally more
challenging and sensitive to technical variability [49].
The resulting metatranscriptomes must generally be
accompanied by paired metagenomes in order to allow inter-
pretation of the data, otherwise changes in DNA copy num-
ber (i.e., microbial growth) cannot be differentiated from
changes in transcriptional activity [24]. This is particularly
true for amplicon-based rRNA metatranscriptomics, a
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proposed proxy for organismal growth or metabolic activity
within a community [50]. In such settings, it is not yet clear
how we could account for 16S rRNA gene copy number
variation, differences in ribosomal transcription rates, or even
the exact biological interpretation of 16S rRNA transcript
abundances (as opposed to gene abundances as profiled by
typical DNA amplicon sequencing).
By contrast, shotgun metatranscriptome studies pro-

vide biological information that complements metagen-
ome studies, including detection of RNA viruses and
quantification of rare but functional genes that might re-
main undetected in DNA-based metagenomic surveys
[51] (Fig. 1d and e, and Table 2). Metatranscriptomic
sequencing can also highlight the taxon- and strain-
specific transcriptional activity of a community, providing
a comprehensive overview of the functional ecology of the
microbiome (Box 2). A typical metatranscriptomic study,
such as a single-microbe RNA-seq study [52], consists of
several steps, including: 1) transcript mapping and/or as-
sembly; 2) annotation with functional and/or taxonomic
information; 3) normalization; and 4) differential expres-
sion analysis. When processing reads, a metatranscrip-
tomic analysis pipeline typically either maps reads to a
reference genome or performs de novo assembly of the
reads into transcript contigs. The first approach (mapping
to a reference genome) is limited by the information in
the reference database, whereas the second approach (de
novo assembly) is limited by the difficulty of assembling
long contigs of highly variable transcriptional coverage
from complex metagenomes. Downstream bioinformatic
analysis of metatranscriptomic expression profiles must
further account for taxonomic composition variations and
for technical biases associated with RNA-seq experiments.
Table 2 Tools for primary processing of metatranscriptomes

Tool Assembly-
based?

Requires
reference
genome?

Metatranscriptome-
compatible?

Automatic statistic
and/or figures?

Rockhopper Yes Yes No Yes

HUMAnN No Yes Yes Yes

Tuxedo Yes Yes Yes Yes

IMP Yes No Yes Yes

SAMSA Pairs only No Yes Yes

COMAN No No Yes Yes

IDBA-MT Yes No No No

OASES Yes No No No

COGNIZER No No No No

FMAP No No Yes Yes

MEGAN_CE No No Yes Yes

ShotMAP No No Yes Yes
In particular, taxon-specific rescaling (RNA transcript
abundance normalized to its DNA copy number) is a
necessary step in order to ascertain whether apparent
shifts in transcript levels are concordant with changes in
taxon abundances. Finally, to conduct differential gene ex-
pression analysis post-normalization, off-the-shelf tools
from single-organism RNA-seq can be used, some of
which have already been adapted to microbial community
settings [53].

Microbiome-associated metabolomics as an
emerging opportunity to characterize bioactivity
Although several other culture-independent molecular
methods are now joining metatranscriptomics for hu-
man microbiome profiling, non-targeted metabolomics
may represent one of the most successful to date in
explaining the mechanisms of bioactivity [26, 68]. This
includes a range of nuclear magnetic resonance (NMR) and
mass-spectrometry technologies for profiling small mole-
cules from stool [26, 68], skin [69], circulating metabolites
[70, 71], or coupled with other human-associated microbial
communities. In many of these environments, it has been
estimated that over 10% of small molecules may be of mi-
crobial origin or microbially modified [72], highlighting the
need to associate specific microbial strains or genetic ele-
ments with the specific small molecules that, in turn, medi-
ate human health phenotypes. The associated study designs
have as yet seen limited application at the population scale,
with some success stories highlighted below, and it remains
to be seen which microbiome-associated metabolites are
appropriate for predicting or modulating population health
outcomes. The resulting data share similar strengths and
weaknesses to metatranscriptomics; protocols are often still
s Implementation Comments/potential issues Reference

Java Intended for isolates, not communities [127]

Python – [9]

C++/R – [128]

Python/Docker Relies on binning [129]

MG-RAST – [130]

Web-based/
Python/R

Expression distribution of functional
groups across phyla

[131]

C++ Only assembles [132]

– Only assembles [133]

C Functional annotation framework for
sequences

[134]

Perl/R – [135]

Java All taxonomy or function assigned by
BLASTing and binning reads

[136]

Perl/R Several tuning parameters [137]



Box 1. Considerations for the collection of human
microbiome specimens

The microbial ecology of body sites and niches across the

human body is incredibly diverse, and studies of these different

environments typically call for multiple different sample

collection and storage methods. The initial restrictions placed on

sample collection modalities are simply biophysical—a skin or

oral sample may be swabbed, whereas saliva or oral rinse

samples can be manipulated directly, and stool samples are

often homogenized and/or aliquotted. Another main driver of

sampling methodology is biomass, as quantities of bacteria vary

tremendously in various parts of the human body, from 1011

bacteria on the skin to 1014 in the colon [54]. As a result, both

total nucleic acid (DNA/RNA) yields and the proportion of

extracted nucleic acid originating from the host are highly

variable. The first experimental design considerations around

sampling therefore include accessibility, degree of human (or

other 'contaminant') nucleotides, and biomass.

At one extreme, stool is well-suited for metagenomics and

metatranscriptomics because it is rarely subject to biomass

limitations, and easily yields high quantities of microbial RNA

and DNA with low host contamination (up to 75% of fecal mass

is estimated to be bacterial [55]). By contrast, it is challenging to

achieve DNA or RNA yields from skin swabs in the quantities

required for typical shotgun sequencing library preparation.

Finally, every human microbiome sample will contain some

human DNA. In stool from healthy subjects, this comprises less

than 1% of total DNA. The proportion of total DNA derived from

the host is much higher in oral and skin (50–80%) samples [56].

For these reasons, 16S rRNA-based analysis rather than shotgun

metaomic analysis may be beneficial for sample types such as

skin or, particularly, tissue biopsies.

Once collected, human microbiome samples, especially those

for population studies, must be stored and/or transported in a

manner that is compatible with accurate profiling of the

associated microbial communities. This typically entails snap

freezing samples when possible (e.g., in a clinical setting),

transporting them frozen (e.g., on ice), or employing a fixative

that stops microbial growth and stabilizes nucleotides and/or

other biomolecules. Multiple studies have assessed whether

stabilization buffers can preserve microbial community DNA and

RNA. One recent study examined the effects of temperature on

oralpharangeal swabs and mock communities, and concluded

that inadequate refrigeration caused community variation that

was comparable to inter-individual variation [57].

Several studies have now examined the stability of stool under

different fixative and storage regimes. Two recent studies both

found that 95% ethanol and RNALater were comparable to

immediate freezing at –80 °C for DNA preservation [24, 58].

Fewer than 5% of transcripts were affected by the choice of

stabilization buffer [24]. Fecal microbiota transplantation (FMT)

cards and DNA Genotek’s OmniGene commercial transport kit

also induced less change in microbial communities than typical

inter-individual variation. By contrast, preserving samples in 70%

ethanol or storing at room temperature was associated with

substantial changes in microbial community profiles, probably

resulting from incomplete prevention of microbial growth [58].

For population studies, immediate freezing or shipping with ice

packs may not be feasible. Microbiome samples of any type

thus benefit from storage in a stabilization buffer, preferably

with immediate homogenization. A variety of commercial

collection kits are available to facilitate the collection of

microbiome samples. DNA Genotek offers kits for a variety of

body sites (oral, vaginal, sputum, and stool), some of which

preserve RNA. Notably, in contrast to ethanol and RNALater, the

preservative buffer does not need to be removed prior to kit-

based sample extraction, although it may not be compatible

with all molecular data types (e.g., metabolomics, proteomics).

Other commercial entities have developed kits that can be used

as part of an integrated microbiome profiling service. For

example, uBiome offers a swab-based kit with a stabilization

buffer that can be used for a variety of sample types (stool,

genital, skin, and oral), which are typically employed during their

own proprietary microbiome profiling. By contrast, the Biocollective

offers a kit that allows the collection and cold shipping of an entire

stool sample rather than a small aliquot. Given the range of options

and constraints, a critical part of microbiome study design is to con-

sider the cost of collection methods, the ability of these methods to

provide sufficient biomass, their compatibility with a cohort’s postal

or in-person logistics constraints, and the desired suite of down-

stream data generation modalities (possibly including microbial

culture and/or gnotobiotics).
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technically challenging, and while the resulting data may be
more difficult to characterize at the molecular level, when
possible they represent measurements that are often more
directly causal (e.g., small molecules responsible for a spe-
cific bioactivity).

Statistical questions, issues, and practice in
modern epidemiological microbiome studies
In all of these approaches—amplicon-based, shotgun se-
quencing, or other technologies—the persistent goal of
microbiome epidemiology has been to determine whether
and how microbial and molecular feature abundances are
associated with the certain characteristics of the samples,



Box 2. Ecological network inference

Individual species in microbial communities are not independent

actors, and instead closely interact with one another to form a

complex inter-dependent ecological network [59]. Microbial

ecological networks provide insights into a wide range of

interspecies and intercellular relationships including win–win

(mutualism), lose–lose (competition), win–lose (parasitism,

predation), win–zero (commensalism), and zero–lose (amensalism)

[60]. Delineating these relationships is an important step toward

understanding the overall function, structure, and dynamics of the

microbial community.

Traditional approaches to defining these networks require the

use of laboratory methods such as growth and co-culture assays

and combinatorial labeling [61], which do not scale well to

whole communities [62]. Computational approaches, conversely,

are efficient but extremely prone to false positives because

metaomic measurements are near-uniformly compositional [63]

(in which case, for example, the expansion of a single microbe

across samples induces spurious negative correlations with all other

uniformly abundant microbes, because their relative abundances are

simultaneously depressed). Recently, there has been considerable

interest in the construction of compositionality-corrected microbial

co-association networks [64–67]. These approaches vary in their

ability to construct directed vs. undirected microbe–microbe

interaction networks and range from simple correlation measures to

more complex Gaussian graphical models, longitudinal dynamical

systems models, and Bayesian networks (Table 4). Although a variety

of network construction methods exist, methodologies for associating

these microbial covariation and shift patterns with environmental

parameters, clinical outcomes, and time gradients in human

populations are currently lacking, making this a promising area for

future research.
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such as donor health, disease status or outcome, donor
dietary intake, donor medication, or environment
(Fig. 2a–d). This translation of molecular epidemiology to
the setting of the microbiome is challenging for several
reasons. Among these is the technical nature of data asso-
ciated with microbial communities, which typically consist
of counts that have a compositional structure. That is,
microbiome sample data (of most types) are frequently
represented as vectors of fractional relative abundances
(the total of all features in a sample sum to a value such as
1 or 100%). When typical statistical inference methods are
used on compositional data, false positives result as a
consequence of spurious correlation. This problem is
exacerbated in population-scale microbiome studies by
high data dimensionality (up to tens of thousands of
samples containing potentially millions of microbial
features), sparsity (made more challenging as the result of
a mix of true zeros and undersampling events), and mean-
variance dependency (variance of counts changes with the
value of the mean) [63]. Failure to account for these
specific characteristics of microbiome count data during
statistical analysis can lead to strong biases in results; in
particular, false positives outcomes are common, leading
to irreproducible associations even (or especially) in large
cohorts [73].
Several analysis methods have been developed to

specifically address these problems in tests for differ-
ential feature abundance in the microbiome (Table 3
and Box 3). Virtually all of these methods rely on
some form of normalization, and they differ primar-
ily in the choice of the data transformation, statis-
tical model, and null distribution (or equivalent) for
p value calculation. For example, metagenomeSeq
[74] takes raw read counts as input and accounts for
possible biases using a zero-inflated Gaussian mix-
ture model to integrate normalization and differen-
tial abundance analysis of log-counts. MaAsLin [75] uses a
variance-stabilizing arcsine square root transformation to
create continuous abundance profiles that can be analyzed
by regular linear models. Apart from these community-
specific tools, methods developed for differential expression
analysis of similar RNA-seq data—such as edgeR [76],
DESeq2 [77], and limma-voom [78]—have been adopted in
microbiome research. These methods are typically based
on a negative binomial statistical model of the normalized
counts (with the exception of limma-voom, which applies
an empirical Bayes linear model to the normalized counts)
[53, 79]. Apart from these parametric approaches, several
non-parametric alternatives have also been developed, such
as LEfSe [80], Metastats [81], and ANCOM [82]. These
methods make minimal assumptions about the data and es-
timate the null distribution for inference from ranks or
from the observed data alone.
Normalization plays a crucial role in differential

abundance analysis because variation in sequencing
depth can make read counts incomparable across sam-
ples. Directly comparing read counts among samples
with different sequencing depths may lead to the false
conclusion that features are differentially abundant even
when they have the same composition. In addition to
simple total sum scaling (TSS) or rarefaction, this has led
to the development of a variety of normalization ap-
proaches, such as trimmed mean of M-values (TMM)
[83], relative log expression (RLE) [84], and cumulative
sum scaling (CSS) [74], that aim to address the heterosce-
dasticity of the samples by variance stabilization and
robustification or filtering [53]. Rarefaction is not ideal for
many purposes because of its lack of statistical power and
the existence of more appropriate methods [53], but it is
fast and can be reasonably accurate in approximating a
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Fig. 2 Microbiome molecular epidemiology. a Multiomic profiling of host and microbiota enables in-depth characterization of community
properties from multiple culture-independent data types (including metagenomics, metatranscriptomics, metaproteomics, and metametabolomics) to
address questions concerning the microbiome’s composition and function. b As in host-targeted molecular epidemiology, metagenomic and other
metaomic data types can be integrated and associated with the available metadata to provide a comprehensive mechanistic understanding of the
microbiome. c A wide range of early-stage data analysis choices can strongly affect microbial community data analysis, including the quality control of
the raw data, the normalization of the raw data, choice of host and microbial features to extract, and algorithms to profile them. A hypothetical
example of four taxonomic features is shown derived from four samples with differing metagenomic sequencing depths (top). Features with the same
relative abundances may thus appear to be different on an absolute scale because larger sequencing depth can generate larger read counts (top).
Normalization also corrects for potential batch effects and helps to preserve meaningful signal between cases and controls (bottom). Note that the
precise methods used for global visualizations, such as the ordination method, can dramatically affect how the data are summarized, as can important
parameters in the process, such as the (dis)similarity measures used to compare features or samples. d Within an individual study, the integration of
multiple metaomic data types can provide stronger collective support for a hypothesis. Here, a hypothetical disease association is shown at the DNA,
RNA, and protein or metabolite levels, providing a more complete picture of the disease pathogenesis. e When they differ between datasets, the
strong technical effects that the choices mentioned above have on individual studies can impede multi-study meta-analyses, making this type of
population-scale analysis difficult in the microbiome. When possible, the meta-analysis of host and microbial features with respect to shared
phenotypes of interest can allow more confidence in prioritizing microbial taxa, gene products, or small molecules that have statistically significant
roles in disease relative to covariates. f Finally, as with genome-wide association studies, it is critical to validate putative associations of top candidate
microbial features with follow-up experimentation. In the microbiome, this can include studies involving animal models (such as gnotobiotic mice),
mammalian cell systems, and/or microbial cultures
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reliable normalization when necessary, especially given
sufficient sequencing depth.
Given the prominence of multivariate metadata in mod-

ern epidemiological cohorts, the availability of multivari-
able analysis tools is becoming increasingly important in
the microbiome research community (Boxes 3 and 4).
Some methods for differential abundance testing can only
detect univariate associations, whereas other methods,
such as edgeR, DESeq2, metagenomeSeq, limma-voom,
and MaAsLin, can perform multivariable association.
Future microbiome analytical tools must further leverage
the hierarchical, spatial, and temporal nature of modern
study designs, which typically result from repeated mea-
surements across subjects, body sites, and time points.
Several recent studies have taken initial steps to address
one or both of these issues. One avenue of research aims



Table 3 Tools for feature-wise differential abundance analysis in microbial community taxonomic profiles

Tool Counts or relative
abundance

Normalization Data
transformation

Statistical model Multivariable
association

Random
effects

P value
calculation

Reference(s)

Metastats Relative
abundance

TSS None Nonparametric No No Nonparametric
t

[81]

LEfSe Relative
abundance

TSS None Nonparametric No No Kruskal-Wallis [80]

edgeR Counts TMM None Negative binomial Yes No Fisher’s exact
test

[76]

DESeq2 Counts RLE None Negative binomial Yes No Wald’s test [77]

metagenomeSeq Counts CSS Log Zero-inflated
Gaussian

Yes No Moderated t
statistic

[74]

limma-voom Counts TMM Voom Gaussian Yes Yes Moderated t
statistic

[78]

MaAsLin Relative
abundance

TSS Arcsine square
root

Gaussian Yes Yes Wald’s test [75, 138]

ANCOM Counts Log ratio None Nonparametric No No Mann-Whitney
U

[82]

NBMM Counts None None Negative binomial Yes Yes Wald’s test [86]

ZINBMM Counts None None Zero-inflated
negative binomial

Yes Yes Wald’s test [103]

ZIBR Relative
abundance

TSS No Zero-inflated beta Yes Yes Likelihood ratio [85]

CSS cumulative sum scaling, RLE relative log expression, TMM trimmed mean by M-value, TSS total-sum scaling
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to capture the correlation among repeated measurements
by using random effects [75, 78, 85, 86]; other studies have
relied on dynamical system or probabilistic spline
modeling [87] of microbiome time-series data to study the
temporal dynamics and stability of microbial ecosystems.
Despite these innovations, the longitudinal modeling of
microbiome data is still in its infancy, particularly in com-
bination with multiple covariates in large human popula-
tions. There is a dearth of systematic studies aimed at the
evaluation of multiple-covariate, repeated-measure
methods for microbiome epidemiology, with no clear con-
sensus to date. As microbiome data continue to
Table 4 Tools for compositionality-aware ecological network
inference

Tool Infers directed
interaction?

Adjusts for
covariates?

Reference(s)

CCREPE/ReBoot No No [64]

SparCC No No [65]

CCLasso No No [66]

REBACCA No No [139]

SPIEC-EASI No No [67]

MENAP No No [140]

MInt No Yes [141]

MetaMIS Yes No [142]

BioMiCo/BiomeNet Yes No [143, 144]

MDSINE Yes No [87]

DBN Yes No [145]
accumulate, there is a pressing need for a rigorous com-
parison of these multivariable tools to help guide experi-
mental designers and meta-analysts.
Many current microbiome epidemiology studies also

use unsupervised models or visualizations to reveal
structural patterns. Ordination is a particularly common
visualization technique [21] that aims to plot samples in
a low-dimensional space (usually no more than three
axes) that also reflects their overall community similar-
ities. This enables intuitive but rough inspection of
strong signals in microbiome data (for example, an ana-
lyst might quickly identify samples with certain common
characteristics that also have similar microbial composi-
tions). Clustering analysis, also referred to as enterotyp-
ing or identifying community state types [88–90], is a
related unsupervised technique for separating samples
that have distinct profiles into different groups ('clus-
ters'), and is appropriate only when distinct microbial
sub-classes reliably exist in the data. Both methods have
been heavily explored in high-dimensional biological
datasets, such as gene expression and single-cell sequen-
cing datasets, and while they can provide powerful tools
for data overview and hypothesis generation, it is also
important to recognize their limitations. First, both
ordination and clustering analyses rely on a sample-
against-sample dissimilarity (i.e., beta-diversity) matrix
as input, and are thus sensitive to the choice of dissimilar-
ity measure [73]. Second, as unsupervised approaches,
both come with a wide variety of tunable parameters that
are difficult to evaluate objectively. Third, for clustering



Box 3. Comparison of statistical methods for
differential abundance analysis of microbiome data

Several studies have investigated the sensitivity and

specificity of differential abundance tests (both omnibus and

per-feature styles) for microbial communities using synthetic

datasets [53, 73, 79, 97, 98]. No single best practice method

that is appropriate for all circumstances has emerged,

making the choice of an appropriate method for any given

experimental setting a task for researchers with appropriate

quantitative experience. In addition, it can be difficult for

synthetic benchmark data to reflect accurately the statistical

properties of microbiome data [67]. Hence, caution is needed

when interpreting synthetic evaluations in the absence of an

experimentally validated gold standard. With these caveats,

some consistent findings have emerged from multiple

comparison studies. First, special care should be taken when

applying any methods to small sample sizes (e.g., < 50) [98].

Second, methods differ in their ability to handle count or

count-like data versus relative abundances (Table 3). Finally,

many of these tools have similar retrieval power for large

datasets but can be too liberal in controlling the false

discovery rate (FDR) [53, 73]. This probably reflects the fact

that differential abundance detection largely depends on the

accurate estimation of feature-specific variability, which

remains difficult in sparse, compositional metagenomic

datasets [73]. Besides statistical performance and computing

efficiency, other issues to consider when choosing a tool

include user-friendliness, ease of installation, and availability

of high-quality documentation and tutorial data. As

simulations typically rely on specific statistical distributions

estimated primarily from technical replicates with minimal

variation, comparisons using simulated datasets should be

complemented with more practical comparisons in real

datasets with true biological replicates.
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analysis, distinguishing between discrete and continuous
sample distribution patterns can be challenging when
sample size is limited and/or signal is weak. Under such
circumstances, quantitative examination of clustering
strength is important to ensure that the identified clusters
actually exist [89]. Finally, both methods are best suited to
identifying the strongest patterns driven by population-
level characteristics, both for microbiome data and in
other ’omics settings [21]. To identify microbial associa-
tions with an outcome variable, supervised analysis [91]
provides the resolution needed to identify patterns that
might not be captured by the single strongest axis of vari-
ation, as well as rigorous, statistically justified quantifica-
tion of such associations.
To this end, several families of omnibus test assess

whether overall patterns of microbial variation in a
community associate with covariates by some signifi-
cance model (e.g., PERMANOVA [92], MiRKAT [93],
ANOSIM [94]), typically with the ability to adjust for
additional covariates. These tests are complementary to
the supervised per-feature epidemiological association
tests described above. They also take beta-diversity
matrices as input, and they adopt statistically justified
procedures to evaluate significance against the null hy-
pothesis that covariates are not associated with overall
microbiome composition. This is in contrast to the use
of multiple individual tests for each microbial feature
(species, clade, pathway, and so on) independently with
respect to covariates, as described above. Similarly to or-
dination, the choice of dissimilarity measure can affect
results, and some methods [93, 95] have correspondingly
developed extensions to incorporate multiple metrics
simultaneously in order to improve robustness. Another
limitation of the omnibus testing methods is that, in
some cases, only statistical significance (i.e., p values) are
provided as output; newer methods aimed at assigning
more interpretable effect sizes are under development
[96]. Finally, omnibus testing procedures by definition
do not identify what variation in a microbial community
might be associated with an outcome of interest. Thus,
although they may require smaller sample sizes than
per-feature tests to be well-powered, they provide less
actionable information as a result. Nevertheless, omni-
bus tests are an important accompaniment to unsuper-
vised visualization in providing a quantitative model in
support of qualitative data exploration by ordination.

Integration of studies needs to address
confounding effects that are unique to
microbiome data
Meta-analyses of microbiome features are becoming
more desirable and common, particularly when scaled to
large human populations in order to achieve reliability
and power for translational findings (Fig. 2e and f).
Meta-analysis [91] is, in general, the quantitative inte-
gration of findings from multiple studies, and it is
crucial in any molecular 'omics field for verifying
true, biological associations and improving power.
Meta-analyses of most types of microbiome data face
major challenges because of strong, batch- and study-
specific biases that arise in most stages of data
generation (sample collection, DNA extraction, PCR amp-
lification, sequencing, and bioinformatics [17, 104]).
Previous multi-cohort studies have confirmed the driving
effect of study-specific protocols on the clustering of
sample-specific microbial profiles (i.e., on population
structure discovery). In the absence of active efforts to



Box 4. Statistical terminologies—multivariate and
multivariable associations

Microbiome data are inherently multivariate. This has led to the

misleading conclusion that most published methods in

microbiome literature are multivariate. Using terminology from

classical statistics and regression analysis, most existing

microbiome association methods can be categorized on the

basis of how the outcome or target (also referred to as

‘dependent’ or ‘response’) variables of interest (left-hand side of

a model equation) are modeled [99, 100].

‘Multivariate’ is the term used when two or more dependent

variables are modeled simultaneously, an approach that is

particularly suitable for relating the joint distribution of the

responses to predictors. In statistics, ‘multivariable’ refers to

approaches that include multiple explanatory variables or

predictors (right hand side of the model equation) in a model

(also known as ‘multiple regression’). ‘Univariate’ is a term used

when one target variable is modeled at a time, completely

ignoring interactions or correlations between dependent

variables. Similarly, ‘univariable’ refers to models that include

only one explanatory variable or predictor. Despite important

differences between these paradigms, they are often used

interchangeably in microbiome research. This imprecise

reporting is also widespread in other disciplines such as public

health, medicine, psychology, and political science [101, 102].

On the basis of the definitions provided above, most published

analytical tools in microbiome epidemiology are essentially

univariate (except PERMANOVA [92], which considers a distance

matrix as (multivariate) dependent variable), and can be

categorized as either simple (univariable) or multivariable

(Table 3). Random effects models such as ZIBR [85], NBMM [86],

ZINBMM [103], and MaAsLin [75] can be considered univariate

multi-level or hierarchical models. These methods account for

multiple responses per observation but consider each target

variable (feature) separately. Other distance-based methods such

as MiRKAT [93] are essentially multivariable methods as they

usually consider the whole community profiles (or a mathematical

function of the community distance matrix) as explanatory

variables along with other covariates. Although interchangeable

use of ‘multivariate’ and ‘multivariable’ seems to be only syntactic,

we believe that achieving consensus on these terminologies will

facilitate improved understanding and better communication

among the next generation of microbiome researchers.
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normalize protocols among meta-analyzed studies, the
effects of these batch differences may be surpassed in
strength only by a few extreme microbial phenotypes
(such as body site of origin) and can easily mask even
strong biological factors such as antibiotics usage and dis-
ease subtype [105].
Changes in protocol can thus heavily influence both

overall community configuration and the abundances of
individual features [23], making analyses such as meta-
analytic differential abundance tests challenging. This
does not, of course, prevent sufficiently strong effects
from being observed across studies (for example, in
inflammatory bowel disease patients). Although such
issues are generally acknowledged in the microbiome re-
search community, efforts to address them have been
limited to date. From an experimental design point of
view, sharing among studies one or more 'mock commu-
nities', comprised of reference material and/or pre-
determined collections of microbial strains in known
proportions, can provide a reference for identifying and
estimating sources of bias [106]. Likewise, the publica-
tion of negative control sequencing results in a consist-
ent manner would allow background subtraction and
contaminant identification among studies. However,
such controls need to be incorporated during the early
stages of a study and cannot be added in retrospect.
They have the potential to make meta-analysis much
easier when included. Mock communities can also be
technically challenging to generate and, of course, incur
additional costs during data generation, but they are
likely to be of high value if included systematically in
multiple studies within and across projects.
To enable true meta-analysis of microbial community

surveys, quantitative protocols to adjust for batch- and
study-specific effects must be developed. For population
structure identification and adjustment, additional steps
are necessary to correct for and reduce such effects be-
fore comparing and aggregating samples from different
studies. Existing popular methods in RNA-seq whole-
transcriptome profiling—such as ComBat [107] and
limma [108]—may be potential candidates, though they
should be modified to account for the zero-inflated
and compositional (or count) nature of microbial
abundances. For single-feature differential abundance
analysis, study-specific effects may alternatively be
addressed by adopting a unified model with identi-
cally defined effect sizes, which can then be compared
and combined across studies using existing proper
statistical methods (for example, mixed-effects models
[86, 109]). Another promising direction is high-
dimensional predictive modeling techniques (that is,
using subjects’ microbial profiles as predictors for out-
comes of interests), such as random forests, neural net-
works, and support vector machines, which are often
successful in reproducibly predicting phenotype across
multiple cohorts [91, 110]. The results obtained to date
suggest avenues by which discriminative machine-learning



Box 5. An integrative analysis of longitudinal
microbiome multiomics: the DIABIMMUNE study

Mallick et al. Genome Biology  (2017) 18:228 Page 12 of 16
models can be applied in microbial community settings to
robustly associate features across multiple studies with
outcomes of interest.
The DIABIMMUNE (Pathogenesis of Type 1 Diabetes—Testing

the Hygiene Hypothesis) [118] study of the microbiome in the

development of infant type 1 diabetes (T1D) is one example

that incorporates many of the aspects of microbiome

epidemiology discussed here. The DIABIMMUNE cohort includes

newborn infants with genetic susceptibility to autoimmune

disorders who were followed for 3 years with monthly stool

sampling and collection of phenotype data through serum

samples and questionnaires. This design was constructed to

enable multiple types of microbiome analyses, such as tracking

the longitudinal trajectories of the developing microbiomes,

studying the implications of common early-life events (e.g., birth

mode, weaning, introduction of solid foods, antibiotic courses)

and case–control comparison between diseased and healthy

children.

One of the study’s first analyses of the gut microbiome focused

on early-life colonization and the development of islet

autoimmunity and T1D [1]. The sub-cohort included four

children with early onset T1D, seven children with T1D-

associated autoantibodies, and 22 healthy controls. All subjects

provided monthly stool samples, regardless of disease status,

yielding a detailed view of microbiome structure and function

during early development (including the transition to solid

food). Strains in particular were subject-specific and retained for

substantial periods of time, even during this active developmental

window. In an early example of multiomic data integration, a

subset of 214 serum and 104 stool samples were also profiled

using untargeted mass spectrometry techniques, allowing covari-

ation between metabolites and microbial taxa to be assessed

statistically.

Another analysis within this study followed neonates from

Finland, Estonia, and Russia, motivated by the disparate

autoimmune prevalence between these three countries [16].

This began with 16S amplicon sequencing of > 1500 stool

samples from 222 infants (74 per country), allowing the

assessment of broad trends in microbiome development over

time. These initial amplicon data were then used to select a

representative set of 785 stool samples for metagenomic

sequencing, which enabled deeper analyses including

taxonomic and functional profiling, and strain tracking. All of

these features were then amenable to linear mixed-effect

modeling in order to identify aspects of the gut microbiome

that covaried with phenotypes such as age, geography, early

feeding, and mode of birth.
Conclusions
Like existing molecular epidemiology technologies, the
translation of population studies of the human microbiome
will require complex processes in order to achieve observa-
tional discovery, reproducibility across cohorts, and mech-
anistic validation (typically in models or in vitro). To date, a
small number of studies have achieved this goal. For ex-
ample, combining mouse models with a small cohort of 20
human subjects, Haiser and colleagues [111] built on
decades of work linking Eggerthella lenta to inactivation of
digoxin [112] to identify an operon that is expressed in a
strain-specific manner in a subset of human microbiome
carriers. As a further example, it has been shown that early-
life exposure to distinct forms of taxon-specific lipopolysac-
charide correlate with immune development and type 1
diabetes (T1D) risk, a result that was subsequently
confirmed in mouse models (Box 5) [16]. Finally, in
Clostridium difficile infection, models linking antibiotic
exposure to bacterial species that are responsible for
secondary bile acid synthesis in the gut have been success-
ful in reducing recurrence [113]. In each of these cases, a
combination of human population surveys with appropriate
statistical modeling and mechanistic follow-up was able to
identify specific bioactive microbes and, often, molecules.
Further examples are emerging, particularly in the area of
cancer immunotherapy, which can be dramatically modu-
lated by the microbiome [114].
One of the outstanding gaps in translational population-

scale microbiome studies is the lack of frameworks inte-
grating host and microbiome functional properties at
scale. For example, functional profiling of microbiome
metagenomes and metatranscriptomes might be com-
bined with cell-circuit reconstructions of immune cell
subsets [115] and with electronic medical records for pre-
cision medicine. At the methodological level, few profiles
of the microbiome have been carried out with scale and
precision appropriate for advanced machine-learning tools
such as causal inference and mediation analysis. Indeed, it
is not yet clear which covariates should be collected to
disambiguate cause from effect in the highly modifiable
microbiome, particularly to facilitate risk-prediction
models or clinical decision-making tools incorporating
microbiome profiles. The microbiome has shown a re-
markable combination of long-term persistence (e.g.,
strain retention for months or years [41, 116, 117]) with
modifiability by a wide range of environmental factors
(diet, pharmaceuticals, physical activity, age, and so on),
making population structure and unobserved confounders
a risk in large cohort studies.



In this metagenomic sequencing study, a set of microbial

products with geographically disparate abundances (and thus

potentially associated with differential atopic and T1D

outcomes) were identified computationally in tandem with

potential source microbes. To verify their relevance in vitro, a

subset (including lipopolysaccharide from several different

microbial strains) was purified and screened against multiple

different immune cell types. This allowed distinct structural and

immunomodulatory properties to be identified, linking

biochemical products to both source microbes and immune

cellular phenotypes (e.g., cytokine production). Finally, a mouse

model was used to show that these properties could, in turn,

influence the outcome of interest, incidence of a model T1D

phenotype.
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Finally, human population studies provide a starting point
for the follow-up characterization of microbial biochemical
mechanisms, which can integrate characterization tech-
niques such as culture-based physiology, microbial metabol-
ism, co-culture, and interactions. Several of the most
successful translational microbiome studies to date have—as
in other areas of molecular epidemiology—begun with a
population-level observation that was, eventually, traced back
to one or more specific molecular mechanisms. In the case
of the microbiome, this provides unique opportunities not
only for prioritization of novel human drug targets, but also
for the modulation of microbial activities by small molecules,
diet or prebiotics, targeted probiotics, or engineered
microbes or communities. To achieve these goals, studies of
the microbiome must continue to refine the multiomic tools
in the setting of population-scale epidemiology with rich
study designs that can fully realize the therapeutic and diag-
nostic potential of the microbiome.
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