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Plant epigenomics—deciphering the
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mechanisms of epigenetic inheritance and

plasticity in plants
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It is an exciting time to study plant epigenetics. Techno-
logical advances are providing unprecedented opportunities
to monitor chromatin modifications, gene expression, and
genome structure. Many classical epigenetic phenomena
(transposable element inactivation, imprinting, paramuta-
tion, transgene silencing, and co-suppression) were first
documented in plants. Combined with classical genetic
studies, newly available sequencing technologies are facili-
tating the study of these and other epigenetic phenomena
at a level of detail that was unthinkable only a few years
ago. Studies of epigenetics in plants are of great importance.
Plants are heavily dependent upon changes in gene expres-
sion in order to respond to environmental stimuli, and
chromatin-based regulation of gene expression is likely
crucial for these responses. Furthermore, the level of
chromatin ‘resetting’ during sexual reproduction appears to
be lower in plants in comparison with animal species [1, 2],
potentially allowing inheritance of epimutations acquired
during plant life. In addition, many plant species can propa-
gate asexually and produce vegetative clones, providing
opportunities for mitotic inheritance of epigenetic states
leading to important traits. This issue of Genome Biology
highlights exciting progress in many areas of plant
epigenetics and epigenomics.

DNA methylation is a well-studied chromatin modifi-
cation in animals and plants that can be stably inherited,
both following cell divisions and, to some extent, across
generations. DNA methylation can be monitored at high
resolution by using sodium bisulfite treatment of DNA,
followed by next-generation sequencing. Cytosines in
different sequence contexts (CG, CHG, and CHH (where
H is any base other than G)) and at different types of loci
in plant genomes can be targeted by DNA methylation.
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This modification has likely evolved as a mechanism to
silence transposons, which are ‘genomic parasites’
invading the genome of their hosts. The vast majority
of transposons are highly methylated and are likely a
primary target for epigenetic silencing. However, the
repetitive nature of transposons and the fact that they
generate large insertion/deletion polymorphisms among
genotypes has led to difficulties in monitoring the link
between transposon polymorphism and DNA methyla-
tion variation. Daron and Slotkin describe a new tool to
study the interactions between transposon methylation
and transposon insertions using whole-genome bisulfite
sequencing datasets [3]. This type of analysis is
expected to be very useful in documenting the role of
genetic and epigenetic variation in DNA methylation
among individuals of the same species.

The RNA-dependent DNA methylation (RADM) path-
way is crucial for maintenance of CHH methylation and
requires the plant-specific RNA polymerases IV and V
(Pol IV and V, respectively). Pol IV generates precursor
transcripts of 24-nt small RNAs (sRNAs) that target
scaffold transcripts from Pol V by sequence complemen-
tarity and recruit the domains rearranged methyltrans-
ferase 2 [4]. A rather unexpected link between RdADM
and the chromatin remodeling factor PICKLE (PKL) is
revealed by Zhang and colleagues, who report that PKL
is required for the accumulation of transcripts generated
by Pol V and for the positioning of Pol V-stabilized
nucleosomes at a subset of RADM target loci [5]. These
findings link nucleosome positioning with the initiation
of RADM, consistent with the previously proposed role
of SWI/SNF chromatin remodeling complexes in estab-
lishing positioned nucleosomes on specific loci primed
for RADM [6]. It is well established that PKL regulates
plant development and, in particular, regulates the access
of Polycomb-group proteins to its targets [7]. Likewise,
SWI/SNF complexes have well-described roles in plant
development [7], extended by the study of Benhamed
and colleagues in this issue showing that the SWI/SNF
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complex core subunit BAF60 regulates access of the
Phytochrome Interacting Factor 4 (PIF4) to nucleosome-
free regions [8]. The dual functional role of chromatin-
remodeling factors in regulating plant development and
RdADM suggests that both processes are more closely
connected than is widely appreciated.

One enigmatic type of methylation—gene body methy-
lation (gbM)—refers to the moderate levels of CG
methylation found within the exons of transcribed genes,
and correlates with intermediate levels of expression [9].
Now, three articles in this issue [10-12] provide new
insights into DNA sequence features and chromatin
factors that might play important roles in gene body
methylation [9]. Picard and Gehring use the offspring of
a cross between two Arabidopsis accessions—with vary-
ing levels of methylation at many loci—to elucidate the
inheritance patterns of gbM [10]. They find little evi-
dence for a role of gbM in gene expression variation
among Arabidopsis ecotypes and also highlight the
factors that control stable and unstable inheritance of
DNA methylation. Schmitz and colleagues document
the evolution of chromomethylase genes in a wide var-
iety of plant species and link differences in this gene
family to differences in gbM among species [11]. Finally,
the work from Berger and colleagues highlights the po-
tential role of histone variants in gene body methylation
in Arabidopsis [12]. Arabidopsis plants with reduced
levels of histone variant H3.3 exhibit reduced gbM and
altered patterns of histone H1, suggesting an antagonistic
relationship between both histones.

While stable silencing of transposons is mediated by
DNA methylation, silencing of defined genes during cell
differentiation is mediated by Polycomb-group proteins
that assemble into the major complexes Polycomb
Repressive Complex 1 (PRC1) and PRC2. Both PRC
complexes have enzymatic activity, with PRC1 applying
monoubiquitination on histone H2A, and PRC2 applying
trimethylation marks on histone H3 (H3K27me3). Based
on models established for mammals and flies, it has long
been assumed that PRC1 is recruited by its ability to
bind to H3K27me3 and thus depends on PRC2 activity.
Nevertheless, recent data show that PRC1 recruitment
can occur independently of PRC2 and, in contrast to
the initial model, PRC1 is able to recruit PRC2 [13].
Turck and colleagues in this issue provide evidence
that PRC1-dependent recruitment of PRC2 is evolu-
tionarily conserved and also occurs in plants, further-
ing our understanding of gene regulation mediated by
Polycomb-group proteins [14].

The role of histone modifications in mediating the
response of plants to changing environmental conditions
is highlighted by two articles in this issue. Trimethylation
of histone H3 on lysine 36 (H3K36me3) has previously
been shown to mark the borders of exons and to connect
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chromatin structure and RNA processing [15]. Immink
and colleagues in this issue reveal that H3K36me3 is re-
quired for high-ambient temperature-controlled flowering
by affecting alternative splicing of functional transcripts,
linking the temperature response to histone modifications
[16]. Data by Hirt and colleagues in this issue show that
microbe-specific molecules trigger mitogen-activated pro-
tein kinases to phosphorylate the plant-specific histone
deacetylase HD2B and regulate its function, thereby estab-
lishing a connection between pathogen-responsive protein
kinase signaling and the chromatin response [17].
Whether specific epigenetic changes have accompan-
ied plant domestication is an important question of po-
tential relevance for plant breeding. Chen and colleagues
identify differentially methylated genes between wild and
cultivated cotton that have potentially contributed to
domestication traits, including flowering-time and seed
dormancy, opening new opportunities for breeding of
polyploid crops by epigenetic engineering [18].
Collectively, this special issue on plant epigenomics
provides insights into current research topics in the field
of plant epigenetics that have been moved forward by
using next-generation sequencing technology. We wit-
ness the enormous progress that has been made from
the initial discovery of epigenetic phenomena up until
now, where we are able to pinpoint epigenetic modifica-
tions throughout the genome. Next, we look forward to
seeing these discoveries being translated into practical
applications of benefit for breeders and consumers.
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