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Abstract

In a recently published article in Genome Biology, Li and colleagues introduced TIMER, a gene expression deconvolution
approach for studying tumor-infiltrating leukocytes (TILs) in 23 cancer types profiled by The Cancer Genome
Atlas. Methods to characterize TIL biology are increasingly important, and the authors offer several arguments
in favor of their strategy. Several of these claims warrant further discussion and highlight the critical importance of
data normalization in gene expression deconvolution applications.
Computational approaches for enumerating cell subsets
from bulk tissue expression profiles have significant
potential for studying tumor cellular ecosystems, includ-
ing tumor-infiltrating leukocytes (TILs) [1–3]. We there-
fore read with interest the recent Genome Biology article
by Li and colleagues in which they introduce TIMER, an
in silico method for TIL deconvolution [4]. TIMER relies
on prior knowledge of immune signature genes as input
and consists of three major steps: (1) gene expression
normalization across platforms and sample types; (2)
selection of immune signature genes that are negatively
correlated with tumor purity; and (3) deconvolution of
RNA admixtures using a previously described technique
for iterative linear least squares regression (LLSR) [5].
They apply TIMER to the inference of six distinct
immune subsets (B cells, CD4 T cells, CD8 T cells,
neutrophils, macrophages, and dendritic cells) in The
Cancer Genome Atlas (TCGA) bulk tumor expression
profiles and investigate links between TIL heterogeneity,
tumor genomic features, and survival in 23 cancer types.
Several groups, including ours, have also proposed

methods for gene expression deconvolution [1, 3, 5, 6].
We recently described CIBERSORT, an in silico tissue dis-
section approach that is robust to noise, unknown mixture
content, and closely related cell types (collinearity) [6].
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Notably, in benchmarking experiments CIBERSORT out-
performed other deconvolution methods, including LLSR,
and revealed complex associations between 22 distinct im-
mune subsets and outcomes in a pan-cancer meta-
analysis [6, 7]. We were therefore surprised by several
claims in relation to CIBERSORT.
First, the authors assert that CIBERSORT succumbs to

statistical collinearity (i.e., cell subsets with highly corre-
lated expression profiles), leading to biased estimations.
Evidence for this argument is primarily based on a sim-
ple experiment in which inferred levels of each immune
subset were compared by Pearson correlation. After
aggregating CIBERSORT results from 22 phenotypes
into the same six subsets, the authors compared cross-
correlation matrices between TIMER and CIBERSORT on
four cancer types. Leukocyte levels estimated by TIMER
were almost always positively correlated. According to the
authors, positive correlations make intuitive sense because
“immune cells work in synergy.” In contrast, the correla-
tions among the six phenotypes estimated by CIBERSORT
were largely negative. The authors also observed negative
correlations when analyzing more than six cell types with
TIMER (i.e., LLSR), stating that negative correlations indi-
cate a technical artifact due to collinearity.
In fact, CIBERSORT mitigates such bias through

regularization, as was rigorously demonstrated through a
battery of validation experiments [6, 7]. These analyses in-
cluded an assessment of “deep deconvolution” in which in
silico predictions of closely related leukocyte subsets were
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directly compared against flow cytometry [6]. Moreover, an
independent study confirmed that regularization improves
the performance of gene expression deconvolution [8].
We were also surprised by the authors’ claim that

hematopoietic cell types should generally track together,
especially in light of their diverse functions (innate or
adaptive, stimulatory or suppressive, etc.) and migration
patterns (circulating, tissue-infiltrating, or tissue-resident)
[9, 10]. For instance, while specific hematopoietic subsets
infiltrating tumors can be positively correlated in a given
tumor type [11], the expectation of universally positive
correlations does not extend to all tumor types, or to all
infiltrating immune cells [12]. Separately, age-related
lymphomyeloid lineage skewing of hematopoiesis [13]
would be expected to further confound this assumption.
Finally, while acute and chronic inflammation can be
substrates for tumor initiation, a number of distinct
tumor-infiltrating immune cells are known to have
either tumor-promoting or anti-tumor properties, and
are associated with inverse prognostic correlations
with cancer outcomes [9, 14].
We therefore reanalyzed previously published flow

cytometry data of leukocyte subsets directly enumerated
in peripheral blood mononuclear cells (PBMCs) from
healthy donors and in tumor biopsies obtained from
patients with lung squamous cell carcinoma (LUSC)
[6, 7]. When we quantified each immune subset as a
fraction of total leukocyte content, many of the
a

Fig. 1 Variable correlation of directly enumerated leukocyte frequencies in
of nine distinct leukocyte subsets profiled by flow cytometry in peripheral
as panel a, but for five immune subsets profiled by flow cytometry in 13 lu
frequencies were normalized to sum to 1 prior to correlation analysis. c Sam
expressed as a percentage of viable singlets prior to correlation assessmen
pairwise correlations were negative, as were the mean
correlation coefficients (Fig. 1a and b), consistent with
CIBERSORT. However, when we instead considered
absolute TIL levels in the same lung tumors, most of
the correlations were positive (Fig. 1c), likely reflecting dif-
ferences in tumor purity. Thus, data normalization in solid
tumors significantly impacts the assessment of TIL
heterogeneity and composition.
Given these results, we suspected that tumor purity

would explain the discrepancy between TIMER and
CIBERSORT. Indeed, after examining the TIMER source
code, we found that, unlike most previous deconvolution
methods including CIBERSORT, TIMER solves the
regression problem without normalizing inferred cell
subset frequencies to 1. TIMER results are therefore
directly influenced by total leukocyte content, which is
inversely correlated with tumor purity across TCGA
(Fig. 2a). As a result, all six cell types strongly correlate
with total leukocyte abundance in nearly every analyzed
tumor type (Fig. 2b), making it difficult to discern the
intercellular heterogeneity among the leukocyte subsets
that variably infiltrate these tumors (Fig. 2c). When
TIMER results were instead normalized in relative space
(i.e., summing to 1) for each sample, all mean cross-
correlation coefficients were negative (Fig. 2d). The
inverse held true for CIBERSORT: mean cross-correlation
coefficients became positive when we either (1) omitted
the sum-to-1 normalization step, or (2) multiplied the
b

c

lung tumors and blood. a All-versus-all Pearson correlation matrix
blood mononuclear cells (PBMCs) from 20 healthy donors [6]. b Same
ng squamous cell carcinoma tumor biopsies [7]. a, b Leukocyte
e as panel b, except the frequency of each leukocyte subset was

t. NK natural killer, TIL tumor-infiltrating leukocyte
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Fig. 2 Impact of data normalization on in silico tumor-infiltrating leukocyte profiling. a Tumor purity inferred by ABSOLUTE [29] versus immune
content inferred by ESTIMATE [30], compared across 11 TCGA (The Cancer Genome Atlas) cancer types (ABSOLUTE data were obtained from [26]).
b Bottom heat map showing Pearson correlations comparing overall leukocyte content, inferred by ESTIMATE, with immune subset abundance,
inferred by TIMER, across 23 TCGA tumor types. Cancers are ordered from left to right by the mean correlation coefficient calculated across the six
immune cell types. Top mean cross-correlation coefficient of the six immune subsets compared with each other, omitting self-comparisons.
Cancer types are vertically aligned, and correlation coefficients are expressed as mean ± SEM. c TIMER results are shown for four representative TCGA
cancer types, along with immune content inferred by ESTIMATE. Overall leukocyte content and estimates of individual tumor-infiltrating leukocyte (TIL)
subsets are normalized from 0 to 1 within each cancer type, and ordered from left to right by decreasing immune content. Regression lines
(shown in black) were calculated by cubic splines. d Same as panel b, but after normalizing inferred levels of the six leukocyte subsets to one
in each patient. e Cross-correlation matrix of CIBERSORT results before and after adjustment by total leukocyte content. Results are shown for
lung squamous cell carcinoma (LUSC) microarrays profiled by TCGA (n = 130 tumor samples). ESTIMATE was used to infer total leukocyte content,
denoted immune score. f Average representation of the six immune subsets inferred by TIMER across 23 TCGA cancer types. g Impact of
source datasets on tumor gene expression levels following batch correction. Li et al. applied ComBat [17] to merge expression profiles of
bulk tumors with a reference database containing six immune cell types with variable representation. Here, the number of dendritic cell (DC) samples
in the authors’ reference database (n = 88) was randomly sampled from 1 to 88 while the remaining immune subsets were left unchanged. For each
iteration, ComBat was applied to merge the reference immune profiles with RNA-Seq data from LUSC, which we used as a representative TCGA cancer
type (n = 555 tumors). The median expression level of each DC marker gene (used in Li et al. and originally obtained from [31]) was determined across
the LUSC cohort; markers are represented as medians, quartiles, and 10th and 90th percentiles. h Analysis of the number of immune reference samples
versus the relative fraction of each immune subset inferred by TIMER across TCGA (colored as in panel f)

Newman et al. Genome Biology  (2017) 18:128 Page 3 of 6
normalized results by a separate estimate of overall
immune content (Fig. 2e). While we acknowledge that
TIMER estimates were not intended to be analyzed in
relative space (as described below), the same reasoning
should have been applied by Li et al. to CIBERSORT; that
is, CIBERSORT relative abundance estimates should not
have been directly compared with absolute leukocyte
abundance (as in Table S6 from [4]). Collectively, these
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data highlight the importance of data normalization in
comparing gene expression deconvolution methods.
We and others have previously shown that regression-

based gene expression deconvolution can robustly quan-
tify cell-type proportions [5–7, 15, 16]. Therefore, we
were surprised by the claim that “levels of different cell
types are not comparable” in the output of TIMER [4].
Upon further examination of this output, we found dis-
proportionately high levels of rare dendritic cells (DCs)
across all 23 cancer types (approximately 50% by inferred
fractional abundance; Fig. 2f), suggesting problems with
marker gene selection and/or data normalization. We
hypothesized that this result might be due to the authors’
use of ComBat [17] to purge batch effects between two
highly distinct sample types: bulk tumors profiled by
TCGA and a knowledgebase of purified leukocytes used
for signature genes. In support of this hypothesis, we
found that the number of DC reference profiles in the
knowledge base was strongly correlated with the expres-
sion of DC marker genes in normalized tumors (Fig. 2g).
Further analysis revealed a strong association between
predicted abundance in TCGA (Fig. 2f) and representa-
tion in the knowledge base for all six leukocyte subsets
(Fig. 2h). Thus, misapplication of ComBat distorted im-
portant biological signals that correlate with experimental
batches [18], preventing TIMER from estimating cell type
proportions.
Separately, we wish to address the claim that CIBER-

SORT is only applicable to microarray data [2, 4]. While
microarray datasets were indeed the focus of our previ-
ous studies, this is not an inherent restriction of the de-
convolution algorithm itself, which is platform agnostic.
In fact, the analytical assumptions made by CIBERSORT
are likely to hold for any mixture that can be modeled as
a linear sum of its parts and for which an appropriate
signature matrix exists. Such mixtures include RNA-Seq
datasets, as others have already shown for bulk tumor
profiling [19–21], and for single-cell RNA-Seq profiling
[22], as well as other genomic features associated with
cell lineage [23]. For example, CIBERSORT was recently
used to enumerate hematopoietic subsets in bone mar-
row biopsies from healthy and diseased patients based
on genomic patterns of nucleosome accessibility profiled
by ATAC-Seq [23], demonstrating its broad applicability.
Finally, in response to this correspondence, Li et al. [24]

have made a number of new claims that warrant clarifica-
tion. In order to comprehensively address these claims, we
have included a detailed point-by-point response, includ-
ing new analyses, in Additional file 1: Figures S1 and S2).
We summarize three key points:

1. The authors continue to ignore the significant
impact of data normalization on deconvolution
results, stating that CIBERSORT produces
nonbiological negative correlations mainly due to
collinearity. They dismiss the notion that regularization
can help combat collinearity (despite significant
literature on the topic [25], e.g. ridge regression,
and [8]), and offer a flawed analysis to support
their claim consisting of synthetic mixture
datasets that are improperly defined since the
mixed populations do not sum to 100% and are
therefore unsuitable for addressing this topic
(Additional file 1: Figure S1a and b).

2. Furthermore, Li et al. use a single flow cytometry
experiment (Fig. 1a) to argue that closely related
immune cell types should be positively correlated in
abundance, whether in blood or in tumors. Since the
default version of CIBERSORT produced negative
correlations for the same cell types when
enumerated in solid tumor biopsies, Li et al. claim
these results contradict our own experimental data
in Fig. 1a and are likely due to collinearity. In
making these arguments, Li et al. disregard some
fundamental immunological principles governing
leukocyte migration patterns (see above and
Additional file 1), relevant prior literature
(e.g., Fig. 3a in [6]), and the main point of this
correspondence (e.g., Fig. 2e). To further illustrate
the impact of data normalization on deconvolution
results, we extended our CIBERSORT analysis in
Fig. 2e to 22 immune subsets (i.e., LM22 [6]) in
TCGA LUSC tumors. As expected, the majority of
pairwise correlations were positive when relative
abundance estimates were scaled by total immune
content, including correlations between closely related
cell types (e.g., naïve versus memory B cells;
Additional file 1: Figure S2). Moreover, we observed
no significant association between pairwise
correlations of leukocyte estimates in tumors and
pairwise correlations of corresponding expression
profiles in LM22 (Additional file 1: Figure S2).
Therefore, leukocyte behavior is highly complex
and unlikely to be distilled into simplistic
comigration patterns without significant further
investigation, especially without consideration of
data normalization.

3. Finally, Li et al. claim that up to 25% of LM22
genes are positively correlated with tumor purity
and, as a result, they contend that CIBERSORT’s
model is “frequently violated” when applied to
tumors. Unfortunately, the authors ignore critical
details of the algorithm and the LM22 signature
matrix design. They also fail to consider many
important factors in the interpretation of their
own analyses, including the statistical significance,
magnitude, and distribution of correlation coefficients,
and the impact of positively correlated LM22 genes
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on CIBERSORT results. When considering these
variables, most of the significant positive correlations
are of modest magnitude (e.g., 70% with r < 0.2) and
only a small minority of LM22 genes are
significantly positively correlated with tumor purity
(3% with r > 0.2, approximately 0% with r > 0.4;
Additional file 1: Figure S1c). Furthermore, since
exclusion of all significantly positively correlated
genes from LM22 had virtually no impact on tumor
deconvolution performance (Additional file 1), we
observed no empirical evidence consistent with the
above claim.

In summary, our results address key conclusions in
Li et al. [4, 24] and emphasize the importance of data
normalization in deconvolution analyses. In particular,
deconvolution methods cannot be meaningfully com-
pared without taking normalization differences into
account. By focusing on relative measures of TIL con-
tent in previous work [7], we avoided the confound-
ing impact of tumor purity [26]. This approach has
precedence in prior literature, particularly since many
prognostic associations are more robust when defined as
ratios of functionally distinct TILs (e.g., CD8 T cells versus
Tregs, lymphocytes versus neutrophils, etc.) [7, 27, 28].
Whether absolute or relative measures of TIL abundance
better capture tumor immunology in clinical settings
remains an important consideration for future studies.

Additional file

Additional file 1: Detailed response to Li et al., [24]. (DOCX 561 kb)
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