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Developmental transitions: integrating
environmental cues with hormonal
signaling in the chromatin landscape in
plants

Jun Xiao†, Run Jin† and Doris Wagner*
Abstract

Plant development is predominantly postembryonic
and tuned in to respond to environmental cues. All
living plant cells can be triggered to de-differentiate,
assume different cell identities, or form a new organism.
This developmental plasticity is thought to be an
adaptation to the sessile lifestyle of plants. Recent
discoveries have advanced our understanding of
the orchestration of plant developmental switches
by transcriptional master regulators, chromatin state
changes, and hormone response pathways. Here,
we review these recent advances with emphasis on
the earliest stages of plant development and on
the switch from pluripotency to differentiation in
different plant organ systems.
the central cell each fuse with a male sperm cell, result-
Introduction
Recent studies in both animals and plants have revealed
that the epigenome contributes to cell identity and
function [1, 2]. The epigenome comprises alternative
chromatin states that can impact gene activity; they are
not accompanied by alterations in nucleotide sequence
but can nevertheless be passed on to daughter cells. It is
now clear that a number of attributes of the chromatin
impact the accessibility of the genome for transcription,
including: the three-dimensional organization of the
chromatin in the nucleus; chromatin condensation by
linker histones and non-histone proteins; histone modifi-
cations or the presence of alternative histones (i.e.,
histone variants); the position and occupancy of the
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nucleosomes; and covalent modification of the DNA by
methylation [3, 4]. Upon perceiving a relevant cue,
enzyme complexes (Box 1) can alter the existing chromatin
state, making new genomic regions accessible while closing
others off, thus generating a “legible genome” that is
specific to cell type, developmental stage, or environmental
condition. In this review, we discuss some of the major
developmentally or environmentally triggered transcrip-
tional reprogramming events in plants, with special em-
phasis on the role of chromatin and the epigenome.
Early stages in plant development and response
to environmental cues
From fertilization to embryo development
In angiosperms, seed development is initiated by a
double-fertilization event, during which the egg cell and

ing in the formation of the embryo and the endosperm,
respectively (Fig. 1). The embryo and the endosperm are
surrounded by maternal tissues such as the seed coat,
which derives from the integuments [5]. Proper seed
formation is achieved by the coordinated development
of these three different tissue types [6]. The embryo
initiates a shoot and a root apical meristem, two leaf-like
structures called cotyledons, and a short stem termed
the hypocotyl [7].
The endosperm is a nourishing tissue that supports

embryo growth [8]. Its initiation and its correct develop-
ment are necessary for the establishment of a viable seed
[9]. Endosperm development prior to fertilization is
inhibited by FIS (FERTILIZATION-INDEPENDENT
SEED)-PRC2 (POLYCOMB REPRESSIVE COMPLEX2),
which acts in the female gametophyte and during endo-
sperm development. Loss of FIS-PRC2 function causes
autonomous endosperm development without fertilization,
resulting in seeds that develop an endosperm but no
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Box 1. Chromatin regulators

Genomic DNA that is wrapped around the histone octamer in

nucleosomes is much less accessible than DNA that is not in

contact with histones. Nucleosome occupancy (the fraction of a

specific genomic DNA fragment that is wrapped around a

histone octamer in a population of cells/nuclei) or nucleosome

positioning (the identity of the specific DNA fragment wrapped

around the histone octamer in a larger region of interest) can

be altered by chromatin remodeling using the energy derived

from ATP hydrolysis to break the histone–DNA contacts [155].

Plants have a large number of chromatin remodelers, but the

SWItch/ Sucrose Non-Fermentable (SWI/SNF) complexes formed

around BRAHMA (BRM) and SPLAYED (SYD) and the chromodomain

(CHD) family chromatin remodeling ATPase PICKLE (PKL) are the

most studied [156].

Histone variants are predominantly incorporated into

nucleosomes outside of DNA replication and differ in primary

sequence from “canonical” histones. These sequence differences

impact the properties of the histone variants and those of the

nucleosome particles that contain them [157]. In this review, the

histone variants H2A.Z, H3.3, and H1.3 are discussed.

Covalent modification of histones is executed by

“writers”—enzymes that covalently alter amino acids in the

histones through acetylation, methylation, ubiquitylation, or

phosphorylation, for example [158]. Many of these enzymes act

in complexes. Histone acetyltransferases (HATs) generally cause

increased genome accessibility (less compaction), whereas the

effects of lysine methylation are strongly context dependent.

Polycomb Repressive Complex 2 (PRC2) generates tri-methylation

on lysine 27 of histone H3 (H3K27me3), a transcription-repressive

mark, whereas tri-methylation on lysine 4 of histone H3 (H3K4me3)

is associated with open chromatin and active transcription. Histone

arginine methylation is frequently repressive. Ubiquitination on

lysine 121 of histone H2A (H2AK121ub) is generated by PRC1, an

enzyme complex that also contains non-histone proteins that

strongly compact chromatin. Ubiquitination on lysine 143 of histone

H2B (H2BK143ub) promotes transcriptional elongation.

Additional non-histone proteins have specific protein domains

(such as PHD domains) that can recognize histone modifications;

these downstream effectors are called “readers”. Readers interpret

the chromatin state and contribute to the final chromatin

compaction and transcription outcome.

Finally, all covalent histone marks are reversible, their removal

being executed by so-called “erasers”. There are a myriad of

erasers in plants; in this review, histone deacetylases (HDACs),

which remove histone lysine acetylation, feature most prominently.

HDACs, on their own or together with Polycomb repression,

compact chromatin to silence unnecessary or detrimental gene

expression programs.

In plants, cytosine DNA methylation occurs in three sequence

contexts: CG, CHG, and CHH (where H equals A, T, or C) [159].

Specialized complexes have been linked to the initiation,

maintenance, and removal of cytosine methylation. Cytosine

methylation is frequently associated with transposable elements,

and some of these transposable elements have been co-opted

for the transcriptional regulation of nearby genes, generally

silencing gene expression when methylated. Removal of CGme

is executed by the DEMETER (DME) DNA glycosylase, which has

prominent roles in imprinting in the endosperm.
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embryo [10]. More recently, histone ubiquitination and the
hormone auxin were linked to endosperm formation. Two
H2A deubiquitinases, Ubiquitin-Specific Protease 12
(UBP12) and UBP13, are partners of the H3K27me3-
binding protein Like Heterochromatin Protein 1 (LHP1)
[11]. These proteins are expressed in the central cell of the
mature female gametophyte and are recruited to several
Polycomb targets, where they are required for elevated
H3K27me3 levels and for the repression of transcription. In
the absence of LHP1 or UBP12/UBP13, autonomous endo-
sperm develops, suggesting that LHP1 or UBP12/UBP13
may repress FIS-PRC2 targets [12] (Fig. 1a). Elevating auxin
levels, either genetically or pharmacologically, induces repli-
cation of the central cell in the absence of fertilization [13],
suggesting that auxin may promote endosperm formation.
Indeed, FIS-PRC2 directly silences two auxin biosynthesis
pathway genes, YUCCA10 (YUC10) and TRYPTOPHAN
AMINOTRANSFERASE RELATED 1 (TAR1) in the mater-
nal gametophyte; this lowers auxin levels in the central cell
prior to fertilization. After fertilization, paternal expression
of auxin biosynthesis genes enables an auxin increase in the
fertilized central cell, which triggers the initiation of
endosperm formation, bypassing the block by the maternal
FIS-PRC2 [13] (Fig. 1b).
The endosperm is also the main site of genomic

imprinting in flowering plants, an epigenetic phenomenon
that results in the expression of a gene from just one of
the two available alleles in a parent-of-origin-dependent
manner [14]. Imprinting has evolved independently in
mammals and flowering plants [15]. Differential DNA
methylation underlies most imprinted gene expression
[16]. Global removal of methylation from cytosines found
in CG dinucleotides by the DEMETER (DME) DNA
glycosylase occurs in the maternal genome of the endo-
sperm in Arabidopsis thaliana, leading to hypomethyla-
tion [17, 18]. DME is expressed in the companion cells of
the gametes, including the central cell of the female
gametophyte before fertilization [19] (Fig. 1a, b). Genes
that are exclusively maternally expressed (MEGs) are
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Fig. 1 Function of chromatin regulators in seed development. a Prior to fertilization, DNA hypomethylation by DME enables maternal expression
of PRC2, which deposits H3K27me3 at auxin response genes to inhibit the development of non-embryonic tissues. PRC2 acts in concert with LHP1 and histone
H2A deubiquitinases (UBPs). b Post fertilization, paternally expressed genes raise the auxin hormone level and activate non-embryonic tissue development; this
requires the endosperm expressed TF AGL62. The increased auxin levels reduce PRC2 expression. c CHD and SWI/SNF chromatin remodelers contribute to
embryo pattering after fertilization. Black, chromatin regulators; blue, transcription factors; green, hormones
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characterized by loss of repressive DNA methylation. Pa-
ternally expressed genes (PEGs) arise when reduced ma-
ternal DNA methylation enables an alternative epigenetic
silencing mechanism—polycomb repression—to silence
the maternal alleles [20, 21]. In some cases, parent-of-
origin-specific H3K27me3 is not dependent on differential
DNA methylation [22].
Among the numerous MEGs that have been identified

are the FIS-PRC2 components MEDEA (MEA) and FIS2
[22]. As discussed above, mutation of the MEA or FIS2
components of FIS-PRC2 causes the formation of endo-
sperm prior to fertilization and embryo abortion. This is
due, at least in part, to de-repression of the maternal
alleles of the PEGs YUC10 and TAR1 and to increased
auxin levels [13, 23]. Interestingly, while some of the
same genes (including the auxin biosynthesis genes) are
imprinted in many different flowering plants, the major-
ity of the imprinted genes are species-specific [24–26].
Moreover, imprinting at the same gene may be achieved
by different mechanisms in different plant species. In
Arabidopsis lyrata, an outcrossing plant species closely
related to A. thaliana, many PEGs arise due to CHG
methylation and repression of the maternal alleles, and
the maternal endosperm genome is not hypomethylated
[27]. One biological role of gene dosage or of imprinting
in the endosperm may be as a hybridization barrier that
underlies speciation [28, 29]. The maternal FIS-PRC2
may also buffer paternal genetic variation to prevent its
influence on seed development [30]. Finally, imprinted
gene expression may transmit environmental cues that
are perceived by the mother plant to modulate seed ger-
mination [31].
A clever genetic trick has been used to enable egg cell

fertilization in a prc2 null mutant background [32]. This
gave rise to viable embryos that became abnormal only
after germination, pinpointing the developmental win-
dow during which PRC2 function is first required in
plant development [33]. Thus, unlike in animals [34],
PRC2 is not strictly essential for embryo formation in
plants. Other chromatin regulators are important for the
development of the embryo proper (Fig. 1c); for
example, double mutants in the redundantly acting SWI/
SNF (SWItch/Sucrose Non-Fermentable) subfamily chro-
matin remodelers MINUSCULE1 (MINU1) and MINU2
cause embryo lethality, with abnormal cell divisions appar-
ent by the globular stage [35]. Double mutants in the
BRAHMA (BRM) and SPLAYED (SYD) SWI/SNF sub-
family chromatin remodelers, which have overlapping
roles, also cause embryo lethality, as do mutations in the
SWI/SNF chromatin remodeling complex components
SWI3A or SWI3B [36–40]. In the case of brm mutants,
the embryo defect may result from reduced auxin
response; double mutants in brm and the auxin response
factor monopteros (mp) are embryo lethal [40].
Unlike the egg cell and the central cell, which are

fertilized and give rise to the embryo and the endo-
sperm, the maternal tissue of the ovule does not partici-
pate in the fertilization process, yet it also undergoes
drastic changes in response to fertilization. The integu-
ments undergo rapid cell division and expansion to form
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the seed coat [41], while the proximal region of the
nucellus undergoes programmed cell death (PCD) [42].
Sporophyte PRC2 (EMBRYONIC FLOWER2 (EMF2)/
VERNALIZATION2 (VRN2)-PRC2) exerts a block on
seed coat development before fertilization, and lack of
the core PRC2 subunits VRN2 and EMF2 results in
dosage-dependent autonomous seed coat development
[43]. Auxin and gibberellin (GA) signaling are activated
in the seed coat post-fertilization, and exogenous appli-
cation of GA3 or 2,4-D (auxin) or overproduction of
these hormones promotes fertilization-independent seed
coat development [23]. The production of auxin in the
unfertilized central cell is sufficient to drive seed coat
development [23, 43], and the endosperm-specific
transcription factor (TF) AGAMOUS-like MADS box
protein 62 (AGL62) [44] promotes the transport of auxin
from the endosperm to the integuments via the tran-
scriptional upregulation of a PGP-type auxin transporter
[23, 45]. Genetically, auxin and PRC2 act in the same
pathway, with auxin acting upstream of PRC2 and
downregulating PRC2 accumulation, whereas GA is
activated when PRC2 is removed from the integuments
(Fig. 1a, b). These findings uncover a precisely tuned
developmental switch, operating at the intersection of
hormones and chromatin regulators, that provides
coordinated development of the embryo, endosperm,
and seed coat. It also balances the maternal and paternal
genomes, thereby impacting survival and speciation.
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In higher plants, seed development can be divided into
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seed dormancy and germination [47, 48] (Fig. 2).
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dormant state following seed shedding. Factors that
modulate ABA levels or signal transduction alter the
seed dormancy level [49, 50]. DOG1, which was isolated
by quantitative trait locus analysis, has been identified as
a major and “specific” regulator of seed dormancy in A.
thaliana and other plants, and DOG1 levels and activity
are intricately regulated [51–53]. This regulation in-
cludes positive autoregulation at sites that are subject to
natural variation [54]. A study of dormancy cycling in
the soil implicated seed bank factors involved in the
dynamics of chromatin remodeling in changing dor-
mancy status by altering the expression of key regulators
such as DOG1 [55]. The H2B ubiquitinases HISTONE
MONOUBIQUITINATION 1 (HUB1) and HUB2 and the
ARABIDOPSIS TRITHORAX-RELATED 7 (ATXR7)
H3K4 methyltransferase promote seed dormancy by
upregulating expression of DOG1 and other genes,
presumably by influencing their H2Bub and H3K4 methy-
lation statuses [56–58]. By contrast, SIN3-LIKE (SNL)
co-repressor proteins promote seed dormancy by prevent-
ing the acetylation of H3K9/18 or H3K14 at genes linked
to germination [59]. In addition, the HDA9 HDAC pro-
motes seed dormancy by repressing genes that are related
to photosynthesis and photoautotrophic growth [60, 61]
(Fig. 2). During seed maturation, the expression of master
transcriptional activators of seed dormancy is therefore
upregulated by chromatin modifications that are poten-
tially linked to transcriptional elongation, while genes that
promote germination and photosynthesis are repressed by
histone deacetylation.

Seed germination and greening (photomorphogenesis)
After the release of dormancy by environmental signals
such as stratification [62], seed germination commences
with protrusion of the radicle through the seed coat
[47]. This process is facilitated by GA, which is newly
synthesized in the imbibed embryo, and is inhibited by
ABA [47]. Additional hormones such as ethylene and
auxin also play roles in germination [63]. Low doses of
auxin promote germination, whereas high doses inhibit
this process [63]. Upon germination, the seed matur-
ation program is silenced and seedling identity genes are
activated. The broad changes in transcriptional programs
that accompany this key developmental transition are
orchestrated by a myriad of events that remodel and
modify chromatin state (Fig. 2).
Repression of the seed maturation/dormancy program

involves both the EMF2-PRC2 complex and PRC1,
which silence the expression of seed maturation loci
such as ABI3, LEC2, DOG1, and CHOTTO1 (CHO1)/
AINTEGUMENTA-LIKE 5 (AIL5) during germination
[33, 64–69]. The PRC1 complex is recruited by VP1/
ABI3-like (VAL) proteins and PHD domain-containing
ALFIN1-like (AL) proteins. AL protein can bind to
H3K4me3. Two homologs of ZUOTIN-RELATED FAC-
TOR1 (ZRF1), possible readers of H2Aub, contribute to
Polycomb-mediated silencing of ABI3, CRUCIFERIN 3
(CRU3), and CHO1/AIL5 [70]. Histone deacetylases
(HDACs) such as HDA19 and HDA6 also repress seed
maturation genes [71–74]; these enzymes are recruited
by diverse TFs, including VAL2, SCARECROW-LIKE15
(SCL15), and BRI1-EMS-SUPPRESSOR1 (BES1), and by
the TOPLESS (TPL) co-repressor [73, 74]. Finally, H3K9
methylation by SU(VAR)3-9 HOMOLOG 4 (SUVH4)
and SUVH5 and chromatin remodeling by the chromo-
domain (CHD) family member PICKLE (PKL) and by
the SWI/SNF chromatin remodeler BRM also contribute
to the silencing of dormancy and of embryonic genes
[75–79]. The histone H3K4me2/3 demethylases LYSINE
SPECIFIC DEMETHYLASE LIKE 1 (LDL1) and LDL2, by
contrast, assist in the process by removing activating his-
tone modifications from the seed dormancy genes [80].
To promote germination, the histone arginine demethy-

lases JUMONJI DOMAIN-CONTAINING PROTEIN 20
(JMJ20) and JMJ22 remove repressive histone arginine
methylation from two GA biosynthesis genes, GIBBEREL-
LIN 3 BETA-HYDROXYLASE1 (GA3OX1) and GA3OX2
[81]. In addition, SNL co-repressors slow the speed of seed
germination by inhibiting auxin synthesis and directly re-
press the expression of auxin transporters such as AUXIN
RESISTANT1 (AUX1) [82]. Increased H3 lysine 9 or 18
acetylation (H3K9/18 ac) at AUX1 was observed in snl1
snl2 mutants. AUX1 enhances radicle emergence by
promoting CYCLIN D expression [82].
When the seedling emerges from the soil, photo-

morphogenesis commences; this is characterized by
reduced hypocotyl elongation, by cotyledon opening and
expansion, and by chlorophyll biosynthesis [83]. The
switch from heterotrophic to autotrophic growth is
accompanied by large-scale transcriptional reprogram-
ming in the context of chromatin (Fig. 2). Light expos-
ure triggers nuclear architecture reorganization, which
involves events such as nuclear size expansion, hetero-
chromatin condensation and globally increased RNA Pol
II activity [84]. This nuclear architectural change is in-
duced mainly by blue light and is independent of local
DNA methylation changes [84]. Germination is coupled
to red/far-red light sensing by the light labile
PHYTOCHROME-INTERACTING FACTORs (PIFs).
For example, PIF1 inhibits seed germination in the dark
by increasing ABA and by decreasing GA levels and
response, as well as by repressing genes that are required
for cell wall loosening [85]. PIF1 recruits the LEUNIG
HOMOLOG (LUH) of the Groucho family transcriptional
co-repressor to a subset of its targets [86]. PIF1 also
inhibits chlorophyll biosynthesis by recruiting the SWI/
SNF chromatin remodeling ATPase BRM to the chloro-
phyll biosynthesis gene PROTOCHLOROPHYLLIDE
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OXIDOREDUCTASE C (PORC) to repress its expression
[87]. The CHD chromatin remodeling ATPase PKL is re-
quired for 80% of the gene expression changes triggered
by GA [88]. Finally, CCAAT-box binding factors redun-
dantly repress light-controlled hypocotyl elongation, inter-
act with HDA15, and bind to the promoters of hypocotyl
elongation genes such as IAA10 and XTH17 [89]. Germin-
ation and establishment of autotrophic seedling growth
thus not only rely on chromatin modification and remod-
eling in response to environmental cues that trigger re-
pression of the embryonic and dormancy programs, but
are also accompanied by altered hormone environments
and large scale nuclear reorganization.

Pluripotency and differentiation in plant
development
De-differentiation and callus formation
All living plant cells can de-differentiate (i.e., form
callus) when exposed to a combination of auxin and
cytokinin (CK) hormones, and it has been proposed that
de-differentiation occurs through a root developmental
pathway [90]. Asexual propagation via induced de-
differentiation and subsequent regeneration of a new
plant is of economical importance for diverse species
from oil palms to orchids [91]. Callus formation in
plants—like induced pluripotency in animals —requires
epigenetic reprogramming [92]. In agreement with these
findings, callus formation is accompanied by rapid loss
of H3K27me3 from many genes, including several that
are linked to the auxin pathway [93]. However, induced
differentiation from leaves also requires PRC2 activity,
presumably to silence the foliar gene-expression
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tants in which this chromatin remodeling ATPase is de-
fective are hypersensitive to CK and show enhanced
callus greening [94]. By contrast, several HDACs pro-
mote callus formation and are transcriptionally upregu-
lated during callus induction [95]. For example,
mutation of HDA9 or HD-TUINS PROTEIN 1 (HDT1)
causes reduced callus formation that is correlated with a
lack of meristematic gene activity (Fig. 3) [95].
A recent genome-wide transcriptome comparison be-

tween wild-type leaves and leaf explant-derived calli
identified 10,405 differentially expressed genes [96]. Not
surprisingly, key TFs involved in leaf development were
downregulated in the calli. In addition, 115 genes that
are involved in chromatin remodeling were differentially
expressed in calli. Notably, the expression of chromatin
regulators that act in opposition to Polycomb repression
(H3K4 methyltransferases of the Trithorax family of
proteins) was elevated; these chromatin regulators may
promote the expression of meristematic genes (Fig. 3).
Reprogramming of cell identity through de-differentiation
is not perfect and frequently results in DNA hypomethyla-
tion [97]. In the case of the oil palm, hypomethylation of
the retrotransposon Karma in the B class floral homeotic
gene results in flower-patterning defects and failure to
form seeds [97]. On the other hand meristematic cells in
plants need to be protected from de-differentiation. Poly-
comb repression prevents spontaneous de-differentiation
and the repressive marks set by PRC2 are crucial for
maintaining the identity of differentiation programs [98].
In particular, loss of PRC2 function leads to loss of cell
identity and to callus formation from meristems in the
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shoot and root [33, 98]. The spontaneous callus formed
from meristematic tissues in polycomb mutants differs
from the induced callus in that it frequently produces
somatic embryos [33, 98, 99]. In conclusion, de-
differentiation of mature plant tissues is accompanied by
large-scale epigenetic reprogramming in response to
hormonal cues; this can result in epigenome defects in
asexually produced plants. At the same time, plant
meristematic tissues require Polycomb repression to block
spontaneous de-differentiation.

Root formation and the root stem cell niche
Chromatin regulators have been implicated in the estab-
lishment and maintenance of the primary and lateral
root meristems. The EMF2-PRC2 complex directly
represses the expression of the auxin transport protein
PIN-FORMED1 (PIN1), which is important for rootward
auxin flux, and thus reduces auxin accumulation and
meristematic activity in both the primary and lateral root
[100]. As a consequence, the rate of lateral root
initiation is increased in prc2 mutants [100]. PRC2 is
expressed in the meristem and in the vasculature, and
upstream regulators that control the spatiotemporal
accumulation of PRC2 at the transcriptional level have
recently been identified [101]. By contrast, the SWI/SNF
chromatin remodeler BRM directly activates the expres-
sion of PIN1 in the root [102]. Knockdown of SWI/SNF
Associated Protein 73 (SWP73) causes defective roots
with short meristems that have increased CK levels
[103]. SWP73 represses the expression of ATP/ADP
isopentenyltransferase (IPT) enzymes that regulate the
rate-limiting step in CK biosynthesis. SWP73 binds to
the IPT3 and IPT7 loci and destabilizes a positive gene
regulatory loop (Fig. 3) [103]. The histone acetyltransfer-
ase GENERAL CONTROL NONDEREPRESSIBLE 5
(GCN5) promotes expression of PLETHORA (PLT)
genes, which act in a positive feedback with the auxin
pathway to promote maintenance of the root stem cell
niche [104]. Finally, deacetylation also plays a role in the
root meristem. The WUSCHEL HOMEOBOX5 (WOX5)
gene is expressed in the quiescent center (QC) and pro-
motes stem cell fate in the surrounding initial cells
(Fig. 3b). WOX5 directly represses expression of the TF
CYCLING DOF FACTOR 4 (CDF4), which promotes
differentiation, in the QC and in the columella stem cells
[105]. WOX5 protein moves into the columella stem
cells and recruits the TPL/HDA19 repressor complex to
lower H3 acetylation at the CDF4 locus regulatory
region. WOX5 expression in turn is confined to the QC
by the PHD domain-containing protein REPRESSOR OF
WUSCHEL1 (ROW1) [106]. When ROW1 binds to the
activating H3K4me3 marks on the WOX5 promoter, it
silences WOX5 expression by an as yet uncharacterized
mechanism, restricting shootward expansion of the
WOX5 expression domain (Fig. 3). The transition from
cell proliferation to differentiation in the root is
preceded by eviction of the canonical histone H3.1 and its
replacement with the H3.3 histone variant [107]. Thus, a
multilayered chromatin regulatory and hormonal network
controls root meristem maintenance and size.

SAM initiation and maintenance
Maintenance of the shoot apical meristem (SAM) is tightly
controlled by opposite-acting pathways. WUSCHEL (WUS)
and CLAVATA3 (CLV3) are two key stem cell regulators,
with WUS being expressed specifically in the organizing
center (OC) located below the stem cell pool (Fig. 4c).
WUS non-cell-autonomously maintains stem cell identity
by upregulating CLV3 expression [108]. CLV3 is processed
into a small peptide that limits WUS expression and pre-
vents uncontrolled SAM proliferation [109]. Recently, the
bHLH TF HECATE1 (HEC1) was shown to repress WUS
and CLV3 expression by integrating CK and auxin signals
[110]. The TF FAR-RED ELONGATED HYPOCOTYL3
(FHY3) acts as a direct repressor of CLV3, thus maintaining
the stem cell pool [111]. The GRAS family TF HAIRY
MERISTEM (HAM) physically interacts with WUS/WOX
proteins in various stem cell niches, and HAM and WUS
regulate similar sets of genes [112]. WUS also represses the
expression of the differentiation-related gene KANADI1
(KAN1; Fig. 4a) [113]. Recently, the interaction between
TPL/HDAC and WUS, which is required for stem cell fate
promotion, was mapped to the WUS box and not to the
EAR motif frequently implicated in transcriptional repres-
sion [114]. A separate pathway for SAM initiation and
maintenance acts through the homeodomain TF
SHOOTMERISTEM-LESS (STM), which induces CK bio-
synthesis [115]. CK acts as a positive regulator of WUS ex-
pression, mainly through the perception of CK by two CK
receptors, ARABIDOPSIS HIS KINASE 2 (AHK2) and
AHK4 [116]. A long-distance SAM-promoting pathway
that involves the bypass (bps) signal has recently been
uncovered [117]. bps1 mutants fail to maintain meri-
stem identity and WUS expression because of defects
in CK response.
Only a handful of chromatin regulators have been

implicated in SAM establishment and maintenance.
FASCIATA1 (FAS1), a subunit of the A. thaliana homo-
log of CHROMATIN ASSEMBLY FACTOR-1 (CAF-1),
which is responsible for replication-coupled incorpor-
ation of the canonical histone H3.1, is linked to stem cell
maintenance [118]. fas1 mutants enhance the SAM
defects of weak wus mutants, yet fas single mutants have
an expanded WUS-expressing domain and an enlarged
SAM [118]. One explanation for this apparent discrep-
ancy may be that fas1 mutants fail to initiate a func-
tional organizing center upon germination; this defect
may result in the establishment of new WUS-expressing
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the flower meristem terminates. The floral homeotic TF AG represses WUS expression directly and indirectly by promoting Polycomb repression. KNU,
a direct target of AG, also represses WUS. The expression of STM, a KNOX gene, is silenced by PRC1. The class A floral homeotic gene AP1 lowers CK
hormone levels to promote differentiation. Black, chromatin regulators; blue, transcription factors; green, hormones
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cell populations that subsequently fuse to form one large
fasciated meristem (Fig. 4a). A similar sequence of
events was observed in double mutants of the redun-
dantly acting MINU1 and MINU2 SWI/SNF chroma-
tin remodeling ATPases; hypomorph minu1 minu2
mutants form multiple primary meristems [35]. PRO-
TEIN ARGININE METHYLTRANSFERASE 5
(PRMT5), a member of the type II arginine methyl-
transferase family, directly binds to the regulatory re-
gions of the gene encoding the CLV3 peptide
receptor CORYNE (CRN) (Fig. 4b). The resulting
H3R4me2 methylation represses CRN expression and
this promotes meristem homeostasis [119]. Similarly,
OBERON3 (OBE3), which encodes a PHD finger-
containing protein, acts as a positive regulator of
WUS expression in a mutual positive feedback loop
(Fig. 4b) [120]. Finally, the SWI/SNF chromatin
remodeler SYD directly promotes the maintenance of
WUS expression [121].
Leaf development
To enable leaf initiation at the flanks of the shoot apex,
the MYB TF ASYMMETRIC LEAVES 1 (AS1) and its
partner the LATERAL ORGAN BOUNDARY (LBD)
domain TF AS2 repress the expression of pluripotency
genes. AS1 and AS2 directly recruit the HirA histone
H3.3 chaperone and PRC2 to the regulatory regions of
the Class-I KNOTTED1-like homeobox (KNOX) family
genes BREVIPEDICELLUS (BP) and KNOTTED-LIKE
FROM ARABIDOPSIS THALIANA 2 (KNAT2) to silence
them [122, 123]. The LBD protein JAGGED LATERAL
ORGAN (JLO) contributes to AS2-mediated KNOX
repression by forming a trimeric complex with AS1. Loss
of JLO function leads to the ectopic expression of STM
and BP [124]. The HDAC HDA6 also interacts with AS1
and directly represses KNOX gene expression [125].
More recently, LHP1, also known as TERMINAL
FLOWER2 (TFL2), was shown to contribute to KNOX
gene repression via direct physical interaction with AS1
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and AS2 (Fig. 4a) [126]. LHP1 may promote the spread
of H3K27me3 [127]. LHP1 and AS1/AS2 have many
additional direct targets that have roles in leaf develop-
ment and maturation [126, 128].
A. thaliana leaf cells also face a choice between prolif-

eration and differentiation. Leaf differentiation is
promoted by recruitment of the chromatin remodeler
BRM and the dedicated BRM complex component SWI3C
by the CINCINNATA-like TEOSINTE BRANCHED1,
CYCLOIDEA, and PCF (CIN-TCP) TF TCP4 [129]. BRM,
together with TCP4, reduces CK responsiveness by pro-
moting the expression of an inhibitor of CK response,
ARABIDOPSIS RESPONSE REGULATOR 16 (ARR16).
The transcription co-activator ANGUSTIFOLIA3 (AN3),
on the other hand, promotes cell proliferation in leaves
[130]. AN3 directly induces the expression of GROWTH
REGULATING FACTORS (GRFs) and HEC1. These genes
are also direct targets of the SWI/SNF complex compo-
nents SWP73B and BRM, with which AN3 physically
interacts (Fig. 4c). A subsequent study additionally impli-
cated SWP73B in leaf polarity [131]. Similar interactions
and roles for AN3 and SWI/SNF were also observed in
maize leaf development [132]. Thus, AS1 is at the center
of a chromatin repressor hub that promotes leaf initiation,
whereas opposite roles of the SWI/SNF complex in leaf
maturation are distinguished by the presence of the AN3
co-activator (Fig. 4b, c).
Flower development
Organogenesis (flower primordium initiation) from stem
cell descendants at the periphery of the inflorescence
meristem requires an auxin maximum that activates the
AUXIN RESPONSE FACTOR 5 (ARF5) or MONOP-
TEROS (MP) [133]. When auxin levels are low, negative
regulators of auxin response, the auxin-labile AUX/IAA
proteins, bind to ARFs such as MP and generate a
repressive chromatin environment [133]. AUX/IAA pro-
teins physically interact with and recruit the TPL/
HDA19 co-repressor and additionally prevent MP from
interacting with the SWI/SNF ATPases SYD and BRM
[40, 134]. The histone deacetylation generates a repres-
sive chromatin environment near MP-binding sites that
prevents the activation of auxin response genes in the
absence of the hormonal cue. Increased auxin levels in
the primordium founder cells lead to AUX/IAA protein
degradation, loss of TPL/HDA19, and physical inter-
action of SWI/SNF complexes with MP. SYD and BRM
open up the chromatin at MP target loci such as LEAFY
(LFY) and FILAMENTOUS FLOWERS (FIL) [40].
Histone acetylation might also contribute to this process.
For example, the bZIP11 TF recruits the GCN5 histone
acetyltransferase to promote the expression of auxin
biosynthesis genes [135].
Floral meristems (FMs) arise from subapical stem cells
in the center of the inflorescence [136] and give rise to
the primordia of the floral organs [137]. In stage 2
flowers, the FM is fully formed and floral organ primor-
dium patterning is initiated by the activation of the floral
homeotic genes. Prior to this developmental time point,
floral homeotic genes are silenced by Polycomb repres-
sion [137]. ARABIDOPSIS TRITHORAX 1 (ATX1)
promotes upregulation of the floral homeotic genes
through H3K4 tri-methylation [138]. In addition, the
master regulator of floral cell fate, LFY, together with
the MADS-domain TF SEPALLATA3 (SEP3) recruits
the SWI/SNF chromatin remodelers BRM and SYD to
the class B and class C floral homeotic genes [39]. The
activity of the remodelers is absolutely required to up-
regulate the floral homeotic genes, and the combined
LFY and SEP3 expression domains in the FM overlap
with the sites where these floral homeotic genes are in-
duced. The SAND domain-containing protein ULTRA-
PETALA1 (ULT1) acts in parallel with LFY to activate
the C class floral homeotic gene AGAMOUS (AG) [139].
Finally, the CHD chromatin remodeler PKL also pro-
motes flower patterning and upregulation of the floral
homeotic genes [140].
Interestingly, flower patterning and the activation of

the floral homeotic genes is linked to flower meristem
termination [137]. Like the vegetative SAM and the re-
productive inflorescence meristem, FMs express the
pluripotency factors WUS and STM [135] (Fig. 4d). The
class C floral homeotic gene AG directly represses the
expression of the stem cell-promoting gene WUS in the
center of the flower meristem with the help of PRC2
[141]. In addition, AG activates the zinc finger protein
KNUCKLES (KNU), which in turn directly represses
WUS and thus terminates meristem identity (Fig. 4d)
[142]. ARF3 binds to the chromatin of WUS in an AG-
dependent manner and directly represses WUS expres-
sion to promote FM determinacy [143]. In addition, the
SAND domain protein ULT1 represses WUS expression,
working together with its partner ULT1 INTERACTING
FACTOR 1 (UIF1), a MYB and EAR domain-containing
TF that can bind to WUS regulatory regions [144]. In
parallel, AtRING1a and AtRING1b (core components of
the PRC1 complex) contribute to the termination of
floral stem cell fate through repression of KNOX genes
[145]. Finally, the class A floral homeotic gene AP1 sup-
presses meristematic activity in the axils of the outer-
most floral organs, the sepals, by lowering CK levels
(Fig. 4d). AP1 directly represses the expression of the
CK biosynthetic gene LONELY GUY1 (LOG1) and dir-
ectly upregulates the CK degradation gene CYTOKININ
OXIDASE/DEHYDROGENASE3 (CKX3) (Fig. 4d) [146].
AP1 can physically interact with transcriptional co-
repressors linked to histone deactylation and with SWI/
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SNF group chromatin remodelers [147–149]. Thus, in
flowers, tightly regulated chromatin state switches
promote organ initiation, flower patterning, and meristem
termination.

Discussion
The picture that emerges from the recent investigations
is that developmental transitions in plants are orches-
trated by the combined activities of transcription factors,
hormone response pathways, and regulators of chroma-
tin state. There is crosstalk between these three regula-
tory layers. For example, transcription factors recruit
chromatin enzymes but are also dependent on chroma-
tin remodeling for the ability to bind target genes. The
hormonal pathways trigger chromatin state changes, and
chromatin modification and remodeling alter hormone
accumulation, signaling, and response. Finally, hormone
environments alter transcription factor activity and tran-
scription factors modulate hormone levels and response.
In addition, the large-scale transcriptional reprogram-
ming that occurs during major developmental switches
relies on many diverse chromatin regulators; this en-
hances both the robustness of the underlying chromatin
state changes and the plant's ability to fine-tune the
response to diverse cues. Other conclusions are less
universal. For example, while Polycomb repressive com-
plexes and SWI/SNF chromatin remodeling ATPases
frequently act in opposition, they can also jointly
promote a specific reprogramming event by acting on
the same or on different targets.
A longstanding question has been whether the writers,

erasers, and readers of the chromatin state changes that
accompany major reprogramming events are permissi-
ve—working by allowing master transcriptional regulators
to exert their roles in transcriptional reprogramming or by
preventing them from doing so—or whether they can also
be decisive, that is to say they can interpret intrinsic and
extrinsic cues to trigger the reprogramming events. While
the jury is still out on this question, what has become
clear is that the boundaries between TFs and the chroma-
tin regulators are becoming more and more blurred. Some
TFs in plants are more promiscuous in their genome
occupancy than chromatin regulators [150]. In addition,
as outlined above, it has become apparent that many
developmental or environmental cues are directly inter-
preted by chromatin regulators and modulate their spatial,
temporal, and condition-dependent accumulation or
activity [101, 151–154].
To better understand developmental transition in the

context of chromatin in plants, the future presents a
number of challenges:

1. To elucidate the cell-, tissue- and condition-dependent
roles of chromatin regulators using spatially restricted
loss- and gain-of-function mutants in these regulators
combined with cell- and tissue-specific epigenome
analyses.

2. To identify in temporal resolution the order and
logic of the series of chromatin state changes that
lead to the repression and activation of new gene
expression programs.

3. To define the composition of the individual or
multifunctional complexes that trigger chromatin state
changes and to determine how their formation and
activity are controlled by extrinsic or intrinsic cues.

4. To uncover the biological roles in plant development
or stress responses of the large number of predicted
chromatin regulators present in plant genomes
whose biological roles are not yet understood.
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