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Are cells from a snowman realistic?
Cryopreserved tissues as a source for
single-cell RNA-sequencing experiments

Felipe A. Vieira Braga1*, Sarah A. Teichmann1,2,3 and Michael J. T. Stubbington1*

Please see related Method article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1171-9
Abstract

A recently published study in Genome Biology shows
that cells isolated from cryopreserved tissues are a
reliable source of genetic material for single-cell
RNA-sequencing experiments.
has its own challenges when compared to bulk RNA-seq
Single-cell RNA-sequencing: an ongoing
revolution
Single-cell RNA-sequencing (scRNA-seq) protocols have
developed at a rapid pace in recent years. The first
scRNA-seq protocol to be published generated libraries
from up to 16 cells over six days [1]. Now, thousands of
cells can be isolated and prepared ready for sequencing in
one or two days using droplet microfluidics technologies
[2] or conventional flow cytometry coupled with auto-
mated liquid handlers [3]. Technical improvements have
led not only to an increase in the number of cells analyzed
simultaneously, but also to continuous reduction in cost
per cell. This progress has increased throughput and has
contributed to democratizing scRNA-seq technologies.
These new scRNA-seq methods open the possibility of
obtaining a better understanding of diverse biological
systems. In this issue of Genome Biology, Heyn and
colleagues study the possibility of using cryopreserved
tissues in scRNA-seq experiments [4].
New biological insights provided by scRNA-seq in-

clude the identification of populations of mouse retinal
cells [2], a map of the developing mammalian heart and
programs involved in congenital heart disease [5], and
new CD4+ T cells responsible for steroid production [6].
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The diversity in biological systems illustrates the revolu-
tionary power of current scRNA-seq protocols.
In addition to technical improvements in scRNA-seq

protocols, the development of computational tools to
analyze the large datasets generated are vital to the gener-
ation of novel biological insights. scRNA-seq data analysis

analysis, and specific tools designed for quality control, data
exploration, clustering and visualization [2] are essential to
generate useful biological insights. Other recent develop-
ments include the reconstruction of T-cell receptor se-
quences [7], which permits the analysis of T-cell clonality
and transcriptional identity in parallel, and the unraveling of
developmental processes by analyzing dynamic changes in
gene expression and ordering the cells in pseudo-time [8].
From rare samples to single cells
Despite the diversity of the computational scRNA-seq
methods that are now available and the variety of
biological systems studied by them, most studies rely on
the use of fresh cells and tissues. Modern-day biological
research is highly collaborative and often involves several
experiments taking place across multiple locations,
separated by large distances; the necessity of using fresh
cells and tissues is a limiting factor for such studies at the
single-cell level. This is a limitation especially when
studying infectious diseases such as Ebola and malaria, as
the patients who donate samples are often located
thousands of kilometers away from the scientists analyzing
the biological materials. Furthermore, complex experi-
mental design can also lead to a time gap between tissue
collection and the actual experiment, as is the case, for
example, when antigen-specific T cells need to be isolated
using specific tetramers, a process that demands prior
human leukocyte antigen (HLA) genotyping of the tissue
donor. Thus, fresh samples are not always available and
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alternative methods to preserve tissue in a way that is com-
patible with scRNA-seq technologies are needed. Previous
work has shown that cryopreservation of brain tissue is
compatible with sequencing of RNA isolated from single
nuclei [9] but, until now, there has not been evidence of
successful scRNA-seq using cryopreserved whole cells.
Extending analysis to frozen cells
Cryopreservation of tissues and cells in dimethyl sulfoxide
(DMSO) is a method widely used for the conservation of
biological samples. The paper by Heyn and colleagues [4]
presents a detailed study on the feasibility of using cryopre-
served tissues and cells as a source of material for scRNA-
seq. The authors compare single-cell transcriptomic data
obtained using cell lines that were freshly sequenced or
sequenced after freezing and thawing. Despite differences
in cell viability, both samples had comparable numbers of
sequencing reads and detected genes. Dimensionality
reduction via principal component analysis (PCA) and t-
distributed stochastic neighbor embedding representations
(t-SNE) show similarity between fresh and cryopreserved
samples. These results are consistent for both 3′ MARS-
seq and full-length Smartseq2 scRNA-seq methods, sug-
gesting that cryopreserved cells might be a valuable source
of material for different scRNA-seq experiments.
One of the greatest possibilities created by scRNA-seq

technologies is the unbiased analysis of cell populations
within complex and heterogeneous tissues. Heyn and col-
leagues [4] extended their analysis to human peripheral
blood mononuclear cells (PBMCs), mouse colon tissue
and ovarian carcinoma. scRNA-seq analysis of cryopre-
served PBMCs was capable of identifying all of the major
immune subsets (B cells, monocytes, T cells and NK cells).
Analysis of murine colon identified transit amplifying
cells, secretory enteroendocrine cells and differentiated
enterocytes in both fresh and cryopreserved samples in
similar proportions.
However, within the T-cell subpopulation structure in

blood, the proportions of memory and cytotoxic cells vary
between fresh and cryopreserved samples. A difference in
subpopulation proportions was also observed in tumor
samples. This might be due to different populations being
affected differently by freezing or to technical biases
introduced by different times of sampling. Considering
that the authors showed that cell lines do not change their
transcriptome upon freezing, such small biases are most
probably due to differences in the capacity of different
cells to survive cryopreservation methods. This suggests
that, independent of the technique used to analyze such
samples, small biases in population proportions might
occur in cryopreserved samples.
Thus, one should always carefully consider the experi-

mental design and maintain consistency across samples
for a defined tissue source, as direct comparison of fresh
versus cryopreserved samples might lead to different
conclusions. As with so many things, optimization of
protocols for individual tissues will be important.

The road ahead
The possibility of using cryopreserved tissues in scRNA-
seq experiments will certainly expand the range of pos-
sible experimental designs and biological questions that
can be addressed. However, further developments in this
area are still needed. Current DMSO-based cryopreserva-
tion methods are compatible with work in research
settings but will be harder to implement within the work-
flow of diagnostic and tissue bank services, as most sam-
ples are directly fixed using formalin or another fixative
method. Some initial attempts to perform scRNA-seq
using fixed single-cell suspensions as the source material
[10] have generated promising results. Hence, systematic
evaluation of the suitability of fixed tissues or different
methods of cryopreservation for scRNA-seq experiments
are the next frontier to be explored.
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