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Abstract

We propose a probabilistic method, CancerLocator, which exploits the diagnostic potential of cell-free DNA by
determining not only the presence but also the location of tumors. CancerLocator simultaneously infers the
proportions and the tissue-of-origin of tumor-derived cell-free DNA in a blood sample using genome-wide DNA
methylation data. CancerLocator outperforms two established multi-class classification methods on simulations and
real data, even with the low proportion of tumor-derived DNA in the cell-free DNA scenarios. CancerLocator also
achieves promising results on patient plasma samples with low DNA methylation sequencing coverage.
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Background
Cancer cells often display aberrant DNA methylation pat-
terns, such as hypermethylation of the promoter regions
of tumor suppressor genes and pervasive hypomethylation
of intergenic regions [1–5]. Therefore, DNA methylation
is an ideal target for cancer diagnosis in clinical practice
[6, 7]. Hyper/hypomethylated tumor DNA fragments can
be released into the bloodstream via cell apoptosis or ne-
crosis, where they become part of the circulating cell-free
DNA (cfDNA) in plasma [8]. The non-invasive nature of
cfDNA methylation profiling makes it a promising strat-
egy for general cancer screening. Current research on
cfDNA-based, non-invasive cancer detection approaches
falls into two classes: the development of biomarkers for a
single specific cancer type; and the characterization of
circulating tumor DNA (ctDNA) for general cancer
detection, without trying to predict specific cancer types.
In recent years, several studies have reported plasma

methylation biomarkers for different types of cancers
[9–15]. Usually, the differentially methylated marker

genes are identified by comparing methylation profile
data from patients with a certain cancer type to healthy
controls. However, these specific biomarkers are of lim-
ited use for general cancer screening. Ideally, as a non-
invasive early screening tool, a liquid biopsy test should
be able to detect many types of cancers and provide
tumor location information for further specific clinical
investigation.
Several approaches have recently been proposed for

non-invasive universal cancer detection. These methods
do not rely on detecting biomarkers specific to certain
tumor types. Instead, they utilize properties of ctDNA that
are common to various cancer types, such as copy number
aberration (CNA) [16–19], pervasive hypomethylation
[19], and DNA integrity [16, 20]. None of these methods
can predict the tissue of origin after the detection of
ctDNA. The nature of the liquid biopsy introduces a new
challenge, in that the cancer type can remain unknown
even when there is strong signal of tumor-derived DNA
fragments in the blood. Hence, a positive result from a li-
quid biopsy would call for comprehensive follow-up inves-
tigations using clinical, analytical, and radiological tools to
identify the tumor location. Considering that non-invasive
screening is usually the first step of cancer diagnosis, and
could be associated with a fair ratio of false positives, such
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follow-up would be likely to increase the burden on the
medical care system. A few recent studies have proposed
using cfDNA methylation [21, 22] or nucleosome foot-
printing [23] to partially alleviate this problem. For ex-
ample, Sun et al. [21] estimated the proportions of
cfDNAs contributed by different tissues and showed that
an abnormally high proportion of cfDNA from a specific
tissue can indicate the possibility of a tumor in that tissue.
Their approach, though promising, has not been devel-
oped into a systematic method capable of supporting
clinical diagnosis applications. Lehmann-Werman et al.
[22] tested the same rationale to diagnose pancreatic can-
cer, but fewer than 50% of the pancreatic cancer patients
demonstrated a substantial excess of pancreas-originated
cfDNA fragments compared with healthy subjects.
Snyder et al. [23] pioneered an approach of using nu-
cleosome footprinting to predict the tissue of origin of
the cfDNA, but its power in cancer diagnosis has not
been demonstrated because only five plasma samples
with high ctDNA burden were selected for testing from
44 late-stage cancer patients, and less than one half had
their cancer types correctly predicted.
In summary, no existing cfDNA-based method can

simultaneously detect cancer and predict its tissue of
origin. We are therefore proposing a novel method,
CancerLocator, that simultaneously infers the proportion

and tissue of origin of ctDNA in a blood sample using
genome-wide DNA methylation data. As shown in Fig. 1,
from the vast amount of The Cancer Genome Atlas
(TCGA) DNA methylation data, we first learn the
informative features of different cancer types. We then
model the plasma cfDNAs in cancer patients as a
mixture of normal cfDNAs and ctDNAs. Finally, given
the genome-wide methylation profile derived from the
cfDNA sample of an unknown patient, CancerLocator
uses the informative features to estimate the fraction of
ctDNAs in the plasma and the likelihood that the de-
tected ctDNAs come from each tumor type. Based on
those likelihoods, CancerLocator makes the final deci-
sion on whether the patient has tumors and, if yes, the
locations of the primary tumor.
We first evaluated our method on simulation data

with known ctDNA fractions. The results show that
CancerLocator can achieve a Pearson’s correlation coef-
ficient (PCC) of 0.975 between the predicted and true
proportions of ctDNA, and an error rate of 0.078 for
the classification of non-cancer and tumor types. More-
over, our method far outperforms two well-established
multi-class classification methods in both simulations
and using real data, especially when the proportion of
tumor-derived DNAs in the cfDNAs is lower than 50%
(which is usually the case in reality). We note that

Fig. 1 Flowchart of CancerLocator. Step 1: A set of solid tumor samples and healthy plasma samples collected from public databases and the
literature are used to select the informative features (CpG clusters) that can differentiate tumor types or healthy plasma samples. Then the beta
distributions of the methylation levels of these selected features for each tumor type or healthy plasma samples are learnt. Step 2: Given a
plasma sample, the methylation profile of its cfDNAs is measured by whole-genome bisulfite sequencing, which is then used as input for cancer
location prediction by CancerLocator
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CancerLocator achieved promising results on patient
plasma samples, including around two-thirds of cancer
samples collected from early-stage cancer patients.

Results and discussion
CancerLocator: a probabilistic method for predicting
ctDNA burden and source tissue
A flowchart of CancerLocator is illustrated in Fig. 1. The
first step is to identify the informative features of normal
plasma and multiple tumor types from the massive TCGA
database. We chose to focus on seven cancer types from
the five organs (breast, colon, kidney, liver, and lung) that
are generally regarded as having a high level of blood
circulation. Given the plasma cfDNA methylation profile
of a patient, the next step is to use those informative
features to simultaneously detect cancer and locate its
tissue of origin.
In the first step, we select CpG clusters (our procedure

for grouping CpG sites into CpG clusters is described in
the “Methods” section) as features if their methylation
range (MR) is sufficiently large. MR is defined as the range
of average methylation levels observed in healthy plasma
and different solid tumor tissues. We selected K =14,429
CpG clusters (features), on average1, whose MRs are no
less than the cutoff 0.25. For each CpG cluster, we take
into account its variation across individuals by modeling
the distribution of methylation levels for the same tumor
type (or normal plasma) as a beta distribution, Beta(αt, βt).
The index t = 0 represents normal plasma, while t = 1, …,
T represents a tumor type.
In the second step, we use the selected features and

their beta distributions to deconvolute a patient’s plasma
cfDNA into the normal plasma cfDNA distribution and,
possibly, a solid tumor DNA distribution. We have de-
signed a probabilistic method that can simultaneously
infer the burden and the tissue of origin of the ctDNA.
Intuitively, if the likelihood of presence for any tumor
type is not substantially higher than the likelihood that
the observed distribution is the normal background, the
patient is predicted to not have cancer. Otherwise, the
patient is predicted to have the tumor type that is associ-
ated with the highest likelihood.
Inferring the ctDNA burden θ and tumor type t can

be formulated as a maximum-likelihood estimation
(MLE) problem, where the likelihood function is
expressed as the product of the likelihoods of each CpG
cluster, assuming that all of the K selected CpG clusters
are independent of each other. This is expressed as:

L θ; tjXð Þ ¼
Y

k¼1

K
L θ; tjxkð Þ

where xk denotes the methylation level of CpG site k in
a cancer patient’s cfDNA. In principle, xk is a linear
combination of the DNA methylation levels in normal

plasma and solid tumor type t with fraction θ. The
normal and tumor components of the methylation are
denoted by vk and uk, respectively (Fig. 2). That is,
x = (1 − θ)v + θu (for simplicity, we remove the sub-
script k from these notations). As mentioned earlier,
since v and u follow the Beta distributions Beta(α0, β0) and
Beta(αt, βt), respectively, x follows the distribution ψ(θ, t),
which is calculated as the convolution of two Beta distri-
butions Beta(α0, β0) and Beta(αt, βt).
Because cfDNA has low abundance in plasma, its

methylation is usually measured by sequencing-based
methods. Therefore, the methylation level xk of CpG clus-
ter k can be derived from two numbers, nk and mk, denot-
ing the total number of cytosines and the number of
methylated cytosines mapped to CpG cluster k. We can
model mk and nk together as a binomial distribution mk ~
Binomial(nk, xk), and rewrite the likelihood function as:

L θ; tjM;Nð Þ ¼
Y

k¼1

K
L θ; tjmk ; nkð Þ

Detailed formulas and our optimization method are
given in the “Methods” section.
For a comprehensive performance evaluation, we com-

pare our method with two popular multi-class classification

Fig. 2 The mixture model of methylation level (x) in a patient’s
plasma cfDNA for different burdens of ctDNAs from the tumor type
t. Note that x, u, and v are the methylation levels of a single CpG
cluster k in cfDNA, solid tumor, and normal plasma, respectively
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methods, i.e., random forest (RF) and support vector ma-
chine (SVM), on two types of data: simulation data with
known ctDNA burden and real data with known clinical in-
formation but unknown ctDNA burden. The evaluations
on simulation data and real data are complementary in
assessing the predictive power of the methods.

Prediction performance on the simulation data
The methylation data of a simulated plasma cfDNA
sample is generated by computationally mixing the en-
tire methylation profiles of a normal plasma cfDNA
sample and a solid tumor sample (breast, colon, kidney,
liver, or lung tumors), at a variety of ctDNA burdens (θ
values). This strategy can make the simulated methyla-
tion data keep the potential correlations of methylation
values between CpG clusters in real data. In addition, to
make the simulated data more realistic, we add tumor
CNA events at pre-defined probabilities (10, 30, and
50% across all CpG clusters). The procedure for these
simulations is described in the “Methods” section. The
results described below are on the simulation dataset
with 30% CNA events—simulation data with other CNA
event rates yield similar results (Additional file 1).
We first assessed CancerLocator for ctDNA burden

predictions. Overall, the predicted and true proportions
of ctDNA are highly consistent, with a Pearson’s correl-
ation coefficient of 0.975 and a root mean squared error
of 0.074, respectively. As shown in Fig. 3a, the majority
(87.9%) of the estimated ctDNA burdens for the normal
samples are not more than 0.02, and none of them is
greater than 0.05. Please note that whether a sample is
from a cancer patient or not is determined by the opti-
mal likelihood calculated in the prediction model, not
the predicted ctDNA burden. The prediction results for
the simulated cancer patient plasma samples are shown
in Fig. 3b. We found that the variance of the predicted
ctDNA burdens (θ) increases with the true θ, implying
that the burden estimation becomes less precise when
patients are in mid- or late cancer stages. This result
could be partially explained by the fact that tumor het-
erogeneity may be higher in late stage tumor samples,
which introduces the complexity of ctDNA burden pre-
diction. However, this increased variance does not hurt
the performance of the cancer detection because the pre-
dicted θ is still much higher than the normal background.
Indeed, as demonstrated in Fig. 3b and below in the can-
cer type prediction results, the tissue origin of ctDNA be-
comes more distinguishable with high ctDNA burden,
despite the increased variance in ctDNA prediction.
We then compared the performance of CancerLocator

to that of two popular multi-class classification methods
(RF and SVM; refer to Additional file 1 for details) using
the same set of simulated samples. For a systematic
comparison, we divided the simulation data into ten

subsets for different cancer stages, each of which in-
cludes 200 normal plasma samples and 200 cancer
plasma samples of each tumor type. The different cancer
stages (from early, mid-, to late stages) are represented
by a set of ctDNA burden ranges (θ, θ + 10%], where θ =
0, 10, 20, 30, 40, 50, 60, 70, 80, and 90%. For a six-class
classification problem (normal, breast, colon, kidney,
liver, and lung), we adopt the error rate measure for
assessing the classification performance (see “Methods”).
The results are shown in Fig. 4. For early-stage cancer
patients with ctDNA burdens in the range θ ∈ (0, 10%],
CancerLocator (error rate 0.240) largely outperforms RF
and SVM (error rates 0.807 and 0.816, respectively),
which are only slightly better than random guesses
(0.833). For the second lowest ctDNA burdens θ ∈ (10%,
20%], CancerLocator reaches a very high prediction
performance (error rate 0.067), while RF and SVM still
have very poor performance (0.735 and 0.712, respect-
ively). The two competing methods do not perform
well until the ctDNA burdens are greater than 50%,

Fig. 3 The predicted ctDNA burden for simulated normal and
cancer plasma samples. a Predicted ctDNA burdens for normal
samples whose true ctDNA burden should be zero. b Predicted and
true ctDNA burdens for cancer samples. Each dot represents a
prediction with the true (x-axis) and predicted (y-axis) ctDNA
burdens. The correct and incorrect predictions are represented by
cyan and red, respectively, in both a and b
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which is mainly seen in plasma samples of late-stage
cancer patients. The superior performance of Cancer-
Locator on low to moderate ctDNA fractions indicates
that without considering the mixture nature of cfDNAs
in plasma, existing popular classification methods al-
ways fail to distinguish normal plasma samples and
cancer patients’ plasma samples. This result highlights
the advantage of our method for cancer diagnosis.

Prediction performance on real plasma data
We randomly chose 75% of solid tumor samples and
healthy plasma cfDNA samples as a training set to learn
features. The remaining healthy plasma samples and all
the cfDNA samples collected from cancer patients form

the testing set, to which we applied CancerLocator, RF
and SVM based on the selected features. After performing
this procedure (including random data partition and pre-
dictions) ten times, the predictions of each of the three
methods in ten runs were summarized into a confusion
matrix, as shown in Table 1. Refer to the “Methods” sec-
tion for detailed description of this procedure. For a new
patient’s plasma sample, we assume that we have no prior
information about the cancer type. Therefore, we also
consider colon and kidney tumor as possible results, even
though our real plasma data include no plasma samples
from colon or kidney cancer patients.
The results in Table 1 show that our method vastly

outperforms the two competing methods (RF and SVM).

Fig. 4 Classification performances of three methods (CancerLocator, RF and SVM) on the ten subsets of simulation data. Each subset includes
plasma cfDNA samples at certain cancer stage (represented as a ctDNA burden range)

Table 1 Confusion matrix of prediction results on the real plasma samples

Method True class Predicted class

Breast Colon Kidney Liver Lung Non-cancer

CancerLocator Breast 20 0 0 0 0 30

Liver 0 0 20 233 33 4

Lung 14 0 0 10 68 28

Non-cancer 0 0 10 17 1 142

Random forest Breast 0 0 1 0 1 48

Liver 3 3 10 53 7 214

Lung 4 0 1 0 1 114

Non-cancer 0 0 0 1 0 169

SVM Breast 0 0 0 0 15 35

Liver 0 0 13 66 34 177

Lung 0 0 1 0 26 93

Non-cancer 0 0 1 0 12 157

Numbers in bold are correct predictions
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In fact, the competing methods cannot distinguish most
cancer samples from non-cancer samples. Specifically, all
the breast samples and the majority of liver and lung can-
cer samples are wrongly predicted as non-cancer by both
RF and SVM. The overall error rates of RF and SVM are
0.646 and 0.604, respectively. In contrast, CancerLocator
obtains a low error rate of 0.265 for the six-class predic-
tion problem. These results are consistent with the simu-
lation experiments for ctDNA burdens lower than 50%.
To understand the relationship between estimated

ctDNA burdens and tumor types in real data, we plotted
their relationships in Fig. 5 by summarizing predictions
for each plasma sample in all ten runs: the average esti-
mated ctDNA burden (y-axis value) and the most fre-
quently predicted tumor type (dot color) among ten
runs for each sample. It can be observed that the higher
the estimated ctDNA burden, the more accurate the pre-
diction of tumor type. This is highly consistent with the
results from the simulation data. For the breast cancer
samples, three out of five samples have ctDNA burdens
≤2.2%, and they are all predicted as non-cancer. The in-
ferred tumor burden of the two correctly predicted sam-
ples are 5.0 and 18.0%, respectively, and the latter is a
metastatic sample. For the 29 liver cancer samples, at
least 25 of them are from early-stage (Barcelona Clinic
Liver Cancer stage A) patients. Most of them (80%) were
classified as liver cancer and all of them were detected
as cancer samples. Compared to the breast cancer sam-
ples, most of the liver samples, even at an early stage,
can have moderate to high tumor burden (average pre-
dicted tumor burden of 14.9% and the highest reaching
59.0%), given that liver has generally excellent blood cir-
culation, but we also correctly classified the one with
only 2.0% predicted tumor burden as liver cancer.

Among the 12 lung cancer samples (two samples did not
have cancer stage information), at least five were col-
lected from early-stage patients. These early-stage sam-
ples have predicted tumor burdens ranging from 2.0 to
4.0%. Among these five early-stage lung cancer samples,
four were correctly predicted as lung cancer, whereas
the remaining one was predicted as non-cancer.
We also note that CancerLocator correctly predicted

seven out of eight chronic hepatitis B virus (HBV) sam-
ples to be non-cancer samples. In addition, our method
successfully predicted the only one sample with benign
lung tumor as non-cancer in all ten runs, with the pre-
dicted ctDNA burden always being 0.0%. These results
demonstrate that CancerLocator can go beyond distin-
guishing healthy samples from cancer samples and handle
more sophisticated scenarios, such as differentiating HBV
carriers or benign tumor patients from cancer patients.

Conclusions
Blood-based cancer diagnosis, unlike traditional diagno-
sis based on tissue biopsy, has the potential to diagnose
tumors from many organs. The proposed CancerLocator
aims to exploit this potential of cfDNA by not only diag-
nosing the presence of tumors, but also predicting the
tissue of origin. Although three very recent studies have
investigated the inference of tissue of origin [21–23],
these works lack either a well-developed prediction
method [21] or systematic performance evaluations
[22, 23]. Unlike these previous studies, we lay out a
systematic prediction method for cfDNA-based cancer
type inference, comprehensively evaluate its perform-
ance on both simulated data and real data, and com-
pare its performance to that of two established multi-
class classification methods. We show that having a

Fig. 5 The relationship between ctDNA burden and tumor tissue prediction for each plasma sample of the real data. Each point represents a real
plasma sample. This plot illustrates the average estimated tumor burden (y-axis) and the most frequently predicted tumor type (dot color) among
ten runs for each plasma sample
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mixture of plasma cfDNAs can completely defeat standard
machine learning methods for cancer type predictions
when the proportion of tumor-derived DNA is lower than
50%. In contrast, CancerLocator successfully overcomes
this obstacle. The poor performance of the standard
methods is largely caused by their treatment of the sam-
ples in each tumor class as independent and identically
distributed, following some class-specific distribution,
while in our model the samples from the same class can
still be very different due to different ctDNA percentages
in the blood. In addition, our results show that our
method is robust to CNA events, possibly because the
genome-wide features outweigh the local aberrations.
In this work, we used DNA methylation microarrays

of solid tumor tissues to train the model due to the scar-
city of whole-genome bisulfite sequencing data (WGBS)
in the public domain. Since DNA methylation arrays
focus only on promoter regions, they may miss import-
ant signature regions of cancer. Therefore, we expect
that the growing amount of WGBS data will significantly
empower the proposed approach by revealing better and
higher resolution signatures. Owing to the limited num-
ber of plasma samples, the results of this study are eval-
uated only on three cancer types (breast, liver and lung).
However, our new approach has the potential to perform
well on all cancer types with well-circulated originating
organs. Also, due to the limited plasma samples, the cut-
off of the prediction score λ (defined in the “Methods”
section and computed based on the likelihood) used to
differentiate cancer or non-cancer samples is specifically
determined for this set of plasma samples for the best
performance. When data on more plasma samples be-
come available, this cutoff could be determined by the
training data to be robust to most testing scenarios. Fi-
nally, we note that we identified markers by comparing
methylation profiles of normal plasma cfDNAs and
tumor DNAs. This procedure may introduce markers
that are tissue-specific but not tumor-specific. This ef-
fect can be largely reduced by first using paired samples
(tumor sample and the matched adjacent non-tumor
sample) to identify tumor-specific markers, then further
narrowing down to those markers that show differentiat-
ing signals from normal plasma cfDNAs. We foresee the
increased power by such identified biomarkers when suf-
ficient paired samples become available.

Methods
In this section, we describe: 1) how the data are proc-
essed (including methylation microarray and sequencing
data); 2) the implementation of CancerLocator; 3) how
the simulation data are generated while taking into ac-
count copy number aberrations; 4) how the training and
testing data are split; and 5) what measures we use to
evaluate performance.

Methylation data collection and processing
Data collection
We collect a large set of public methylation data of
solid tumors and plasma cfDNA samples taken from
both healthy people and cancer patients. The majority
of tumor methylation profiles in TCGA were assayed
using the Infinium HumanMethylation450 microarray.
We collect those data for solid tumors with >100
samples from five different organs: 681 samples of
breast (BRCA), 290 samples of colon (COAD), 522
samples of kidney (including 300 KIRC and 156 KIRP
samples), 169 samples of liver (LIHC), and 809 sam-
ples of lung (including 450 LUAD and 359 LUSC
samples) cancer.2

The public methylation data of plasma cfDNA samples
are from Chan et al. [19] and Sun et al. [21]. The two
datasets include the WGBS data of plasma samples
taken from 32 normal people, eight patients infected
with HBV, 29 liver cancer patients, four lung cancer pa-
tients, five breast cancer patients, and a number of pa-
tients with tumors in organs without a large blood flow.
We also generated WGBS data from plasma samples
collected from eight cancer patients (five early-stage
lung cancer patients, one late-stage lung cancer patient,
two lung cancer patients with unknown stage informa-
tion) and one patient with a benign lung tumor. We
used only the normal, HBV, and breast/liver/lung cancer
patients in our study, for a total of 87 plasma samples.
Note that these public WGBS data have very low se-
quencing coverage (~4× on average), while the coverage
of our newly generated data for all nine samples is
around 10×.

Human subjects
The blood samples of eight lung cancer patients and one
benign lung tumor patient were collected. The demo-
graphic and clinical features of the patients profiled are
presented in Additional file 1: Table S2.

Cell-free DNA isolation and whole-genome bisulfite
sequencing
Blood samples were centrifuged at 1600 × g for 10 mi-
nutes and then the plasma was transferred into new
microtubes and centrifuged at 16,000 × g for another
10 minutes. The plasma was collected and stored at
−80 °C. cfDNA was extracted from 5 ml plasma using
the Qiagen QIAamp Circulating Nucleic Acids Kit and
quantified using a Qubit 3.0 Fluoromter (Thermo Fisher
Scientific). Bisulfite conversion of cfDNA was per-
formed using a EZ-DNA-Methylation-GOLD kit (Zymo
Research). After that, an Accel-NGS Methy-Seq DNA li-
brary kit (Swift Bioscience) was used to prepare the se-
quencing libraries. The DNA libraries were then
sequenced with 150-bp paired-end reads.
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Building features (CpG clusters)
The Infinium HumanMethylation450 microarray data
from TCGA measure all solid tumor samples at
~450,000 CpGs. Since our testing sample [19] comprises
WGBS data with very low sequencing coverage, we
grouped the CpG sites into CpG clusters in order to use
more mappable reads. For a CpG site covered by a probe
on the microarray, we define the region 100 bp up- and
downstream as its flanking region and assume that all
CpG sites located within this region have the same average
methylation level as the CpG sites covered by probes.
Two adjacent CpG sites are grouped into a CpG cluster if
their flanking regions overlap. Finally, only those CpG
clusters containing at least three CpGs covered by micro-
array probes are used in this study. We choose the size of
the flanking region and the number of CpGs in a cluster
according to three criteria: (i) at least three CpG sites (in
the microarray data) are included to obtain a robust meas-
urement of methylation values in the solid tumor samples;
(ii) the cluster is reasonably sized, so that there are suffi-
cient CpG sites to calculate the methylation values, even
when low coverage sequencing data are used; (iii) keep as
many clusters that span within a type of genomic region
(either CpG islands or shores) as possible. This procedure
yielded 42,374 CpG clusters, which together include
about one-half of all the CpG sites on the Infinium
HumanMethylation450 microarray. Most of these clusters
are each associated with only one gene. These CpG clus-
ters are used for subsequent feature selection.

Methylation microarray data processing
The microarray data (level 3 in TCGA database) provide
the methylation levels of individual CpG sites. We define
the methylation level of a CpG cluster as the average
methylation level of all CpG sites in the cluster. A clus-
ter’s methylation level is marked as “not available” (NA)
if more than half of its CpG sites do not have methyla-
tion measurements.

WGBS data processing
Bismark [24] is employed to align the reads to the refer-
ence genome HG19 and call the methylated cytosines.
After the removal of PCR duplications, the numbers of
methylated and unmethylated cytosines are counted for
each CpG site. The methylation level of a CpG cluster is
calculated as the ratio between the number of methyl-
ated cytosines and the total number of cytosines within
the cluster. However, if the total number of cytosines in
the reads aligned to the CpG cluster is less than 30, the
methylation level of this cluster is treated as NA.

Feature filtering
For each CpG cluster, we used the methylation range
(MR) to indicate a feature’s differential power between

classes. We first obtained the average methylation level
of all samples from each class (i.e., healthy plasma or
each tumor type), then defined MR as the range of this
set of mean values (i.e., the difference between the lar-
gest and smallest mean values). The higher the MR of a
cluster is, the more differential power it has. Finally, we
selected those CpG clusters whose MRs were no lower
than a threshold.

Statistical inference of the ctDNA burden and tissue
of origin
A mixture model of methylation levels of plasma cfDNAs
The cfDNA in the plasma of cancer patients can be
regarded as a mixture of normal background DNA
and tumor-released DNA. Formally, for each CpG
cluster k ∈ {1, 2, ⋯, K}, the methylation level xk of
the plasma cfDNA from a given patient can be ap-
proximated as a mixture of vk and uk, which are the
methylation levels of the normal plasma sample and
the solid tumor tissue, respectively. Let θ ∈ (0, 1) de-
note the proportion of tumor-derived DNAs in plasma
cfDNA. Then xk can be expressed as the weighted
sum of vk and uk, i.e., xk = (1 − θ)vk + θuk.
We assume that an individual carries at most one type

of tumor among the T possible tumor types. Let t ∈ {0,
1, 2, ⋯, T} be the variable representing either normal
plasma (t = 0) or a tumor type (1 ≤ t ≤ T). For each CpG
cluster k, we model its methylation level in a sample of
type t as a Beta distribution: vk ~ Beta(αk0, βk0) for nor-
mal plasma samples (t =0) and uk ~ Beta(αkt, βkt) for
solid tumor samples of type t ∈ {1, ⋯, T}, where αk0 and
βk0 (αkt and βkt) are the parameters of the beta model of
methylation levels of CpG cluster k in normal plasma
(solid tumor) samples. As illustrated in step 1 of Fig. 1,
the parameters of these Beta distributions are estimated
by the method of moments, using the large amount of
public tumor data and normal plasma data.
By integrating the two Beta distributions (vk and uk),

as shown in Fig. 2, xk can be modeled by a derived distri-
bution with the given ctDNA burden θ and source
tumor type t. This model is denoted as the probability
density function ψ(xk|θ, t), which is calculated by the
convolution of Beta(αk0, βk0) and Beta(αkt, βkt). It is for-
mally expressed as:

ψ xk jθ; tð Þ ¼
Z1

0

f Beta
xk−θuk
1−θ

jαk0; βk0
� �

f Beta uk jαkt; βkt
� �

duk

ð1Þ

where fBeta is the probability mass function of the Beta
distribution.
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Modeling the methylated cytosine count of plasma cfDNA
sequencing data
Due to its low abundance in plasma, the methylation
profile of cfDNA is usually measured by sequencing-
based methods, and the methylation levels (xk) of a
CpG cluster k can be characterized by the numbers
of methylated and unmethylated cytosines in the
reads. Let M = (m1, m2, ⋯, mK) and N = (n1, n2, ⋯, nK) be
the number of methylated cytosines and the total number
of cytosines mapped to all CpG sites, respectively, where
the index runs over all K CpG clusters. For each CpG
cluster k, mk can be modeled by a binomial distribution:
mk ~ Binomial(nk, xk). By integrating the mixture model of
xk in Eq. 1, we have the likelihood function for each CpG
cluster k which has the inputs from the model parameters
(θ, t, αk0 and βk0, αkt, and βkt) and the sequence measure-
ments of plasma samples (mk, nk):

f mk jθ; t; nkð Þ ¼
Z1

0

f Binomial mk jnk ; xkð Þψ xk jθ; tð Þdxk

ð2Þ

where fBinomial is the probability density function of the
binomial distribution.

Maximum-likelihood estimation of blood tumor burden
and type
Given the methylation sequencing profile of a patient’s
plasma cfDNA sample, the vectors M and N, we aim to
find the maximum-likelihood estimate of two model pa-
rameters: a sample’s cfDNA tumor burden θ and its
source tumor type t. For integrating the mixture models
of multiple markers into the formulation, we adopted a
commonly used assumption: all features or markers are
independent of each other. This assumption has been
widely used in a number of cell-type deconvolution
studies [25, 26]. Under this assumption, the log-
likelihood can be written as:

log L θ; tjM;Nð Þ ¼
XK
k¼1

log f mk jθ; t; nkð Þ ð3Þ

Since the integrals in Eqs. 1 and 2 cannot be easily
solved analytically, we use Simpson's rule to calculate
the log-likelihood. That is, a set of J predefined θ values,

Θ ¼ 0; 1J ;
2
J ;…; J−1J

n o
, is used to conduct a grid search

for the best estimation (i.e., a global optimization solu-
tion). The higher the resolution (J), the more precise the

estimation. After obtaining the solution (i.e., θ̂ and t̂ )
that maximizes Eq. 3, we use the estimated parameters
to calculate a simple yet effective prediction score that
answers two questions: “Does the patient have cancer?”;

and “If the patient has cancer, which tumor type is it?”
This prediction score is defined below:

λ ¼ 1
K
½log Lðθ ; t

���M;NÞ−log Lðθ ¼ 0
���M;NÞ� ð4Þ

where the denominator K is used to normalize the log-
likelihood, so that λ is comparable when using a differ-
ent number of features. The variable t is not included in
L(θ = 0|M, N) because θ = 0 indicates a normal plasma
sample. The larger the prediction score λ, the higher the
chance that the patient has a cancer tumor of type t̂ .
Specifically, if λ is greater than a threshold, the patient is
predicted as having cancer with the ctDNA burden θ̂
and the tumor type t̂ ; otherwise, he/she is classified as
not having cancer.

Simulation data generation
We simulate the methylation sequencing data of a pa-
tient’s plasma cfDNAs using the previously described
probabilistic models: (i) a mixture model that treats the
cfDNA as a mixture of normal plasma cfDNA and DNAs
released from primary tumor sites; and (ii) a binomial
model for the methylated cytosine count of plasma cfDNA
sequencing data. In addition, to make the simulation data
more realistic, we incorporate CNAs and read depth bias.
The procedure for simulating plasma cfDNA methylation
sequencing data is detailed in the following sections.

Inputs
Inputs include: (i) the genomic regions of all K CpG
clusters; (ii) the total number of cytosines (Z) on the se-
quencing reads that are aligned to any CpG cluster; (iii)
the range of θ : (θL, θU); (iv) the collections of normal
plasma samples (denoted as POOLnormal) and solid
tumor samples (denoted as POOLtumor); and (v) bk, the
background probability for a CpG dinucleotide to be
aligned to CpG cluster k, satisfying ∑k = 1

K bk = 1. The last
input reflects the read-depth bias introduced during the
sequencing process and read alignment and the density
of CpG sites in the clusters. Refer to Additional file 1 for
details of how to obtain bk.

Output
Output comprises a simulated methylation sequencing
profile of a plasma sample, represented by the integer
vectors M = (m1, m2, ⋯, mK) and N = (n1, n2, ⋯, nK).
The elements mk and nk are the number of methylated
cytosines and the total number of cytosines in the reads
mapped to CpG cluster k, respectively.

Procedure

1. Generate a random ctDNA fraction θ from the
distribution θ ~ Uniform(θL, θU).

^ ^
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2. Generate a random integer copy number ck for each
CpG cluster k, from the categorical distribution ck ~
Cat(6, p0, p1, p2, p3, p4, p5). Here, pc denotes the
probability of observing copy number c ∈ {0, 1, 2, 3,
4, 5} in the sequencing data. The probabilities pc
satisfy three criteria: (i) their sum is equal to one,X

c¼0

5
pc ¼ 1 ; (ii) the average copy number is

equal to two, ∑c = 0
5 c ∗ pc = 2; and (iii) extreme CNAs

are less likely to occur. In this work, we predefine
p0 = 0.005, p1 = 0.16, p2 = 0.7, p3 = 0.105,
p4 = 0.025, p5 = 0.005. Note that the sum of all
these probabilities except p2 (30% in this case) is
the probability of any given CpG cluster having a
CNA event. We have tried other probability
configurations for the simulation with more (50%)
or fewer (10%) CNA events and obtained similar
results (Additional file 1). No CNA event is
considered (i.e., ck is fixed to two) when
simulating a normal plasma sample.

3. Randomly select a normal plasma sample from
POOLnormal whose methylation profile is denoted by
(v1, v2, , vK), and randomly select a solid tumor
from POOLtumor whose methylation level profile is
denoted by (u1, u2, , uK). Note that we also
randomly select two normal plasma samples from
POOLnormal in order to simulate a new normal
plasma sample.

4. Calculate the methylation level xk of plasma
cfDNA at CpG cluster k. This is the adjusted
linear combination of vk and uk after incorporating
the copy number ck generated in step 2. That is,
xk = (1 − θk

' )vk + θk
' uk, where θk

' is the adjusted value

of θ given by θ
0
k ¼ θck

θckþ2 1−θð Þ. θk
' describes the actual

ctDNA fraction after considering the copy number ck
of the ctDNA.

5. Generate a random number nk, representing the
total number of cytosines in CpG cluster k, from
the Poisson distribution nk ~ Poisson(ZBk). Bk is
the adjusted CpG dinucleotide bias bk, given by

Bk ¼ bk 1−θþθck=2ð ÞXK

k¼1
bk 1−θþθck=2ð Þ

, after scaling with the copy

number ck generated in step 2.
6. Generate a random number mk from the binomial

distribution mk ~ Binomial(nk, xk).

Due to the limited number of normal plasma samples,
we also simulated new normal plasma samples by mix-
ing two normal plasma samples at different mixture ra-
tios. The procedure is the same as above except that
step 2 is ignored by fixing all copy numbers as two be-
cause there are no CNA events in the normal plasma
samples.

Performance evaluation
Data partitions for learning signature features, simulation,
and real data experiments
All TCGA solid tumor tissues and plasma samples are
divided into non-overlapping sets for three tasks: (i)
learning discriminating features; (ii) simulation experi-
ments; and (iii) testing on the real data. Specifically, as
shown in Fig. 6, we split TCGA solid tumors of each tis-
sue type into two partitions: 75% for learning signature
features and 25% for generating simulation data. We also
split all normal plasma samples into two partitions: 75%
for learning signature features and 25% for generating
simulation data or for real data experiments. All the
plasma samples of the cancer patients are used to form
the testing set in the real data experiments. Note that
not these plasma samples, but only solid tumor samples
collected from public methylation databases, and a sub-
set of normal plasma samples that were not used for
testing, were used for learning features. All data are ran-
domly partitioned following the above proportions, and
applying a method on one such partition is regarded as
“one run”. For making the robust results, we repeat the
experiments for ten runs and aggregate all predictions
obtained in the ten runs into a single confusion matrix
as the final result. Because we had a limited number of

Fig. 6 Illustration of the data partition for learning discriminating features, in both simulation and real data experiments. Note that simulation and
real data experiments share the same subset (25%) of normal plasma samples
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real cancer plasma samples (only 5, 12, and 29 cfDNA
samples from breast, lung, and liver cancer patients, re-
spectively) for testing, it would not allow the typical
cross-validation for the method’s hyperparameter esti-
mation. For fully utilizing the test samples for effective
performance evaluation, we report only the best predic-
tion results for each of three methods (CancerLocator,
RF and SVM) after examining all possible values of each
method’s hyperparameters. The only hyperparameter of
CancerLocator is the threshold of the prediction score λ,
which is set as 0.023 to generate the predictions on the
real plasma samples. For consistency with the real data
experiments, we apply the same strategies to simulation
data experiments and calculate the error rate averaged
over ten runs.

Prediction performance measures
The error rate and accuracy are the most popular and
established multi-class classification performance mea-
sures [27–29]. They are equivalent to each other. This
study uses the error rate, which is defined as the per-
centage of incorrect predictions out of all predictions.

Endnotes
1We randomly select a subset of the normal plasma

and TCGA tumor samples for training and use the rest
to simulate samples for testing. This procedure is re-
peated ten times. Different training sets may lead to dif-
ferent numbers of selected CpG clusters. We therefore
report the average number of features here. Our data
partition strategy is illustrated in Fig. 6 and described in
the “Methods” section.

2BRCA, Breast invasive carcinoma; COAD, Colon
adenocarcinoma; KIRC, Kidney renal clear cell carcin-
oma; KIRP, Kidney renal papillary cell carcinoma; LIHC,
Liver hepatocellular carcinoma; LUAD, Lung adenocar-
cinoma; LUSC, Lung squamous cell carcinoma.

Additional file

Additional file 1: Supplementary information. A PDF file including
Figures S1 and S2, Tables S1 and S2, as well as the details of background
bias estimation of CpG read counts, the RF and SVM methods, and
CancerLocator’s prediction results on simulation data with different levels
of CNA events. (PDF 558 kb)
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