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Human disease genomics: from variants to
biology
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Abstract

We summarize the remarkable progress that has been
made in the identification and functional
characterization of DNA sequence variants associated
with disease.
gene discovery, in large part due to the ability to
Editorial
The central objectives of human genetic research are to
identify the sequence variation that plays a causal role in
the development of disease, and then to use this infor-
mation to generate insights into the biology of health
and disease that can support clinical translation. These
objectives have long been realized for a subset of dis-
eases attributable to rare, high-penetrance alleles but,
until recently, the challenges inherent in extending this
success to the common, multifactorial diseases that
account for most human illness have often seemed
insurmountable. Nevertheless, over the past decade, the
advent of genome-scale approaches for testing variant
association to disease, and their application to increas-
ingly large sample sets, has transformed our ability to
identify alleles underlying rare and common diseases
alike. At the same time, the arrival of a growing battery
of sequence-based genomic assays has accelerated the
high-throughput characterization of variant and tran-
script function, and these approaches are increasingly
able to highlight the mechanisms through which
disease-risk alleles operate. This is the best of times for
human disease genomics, and this special issue of
Genome Biology charts the remarkable progress that the
community has made.
The first theme that emerges from the manuscripts

published in this issue is the tremendous progress now
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being made in understanding the genetic basis of rare,
typically monogenic, diseases, thanks in large part to
rapid advances in the development and uptake of high-
throughput DNA-sequencing methods. The advent of
cost-effective exome sequencing in particular has
ushered in a second golden age of Mendelian disease

discover causal variants that were inaccessible with pre-
vious technologies. This includes a wave of discovery of
newly occurring (de novo) mutations that were largely
invisible in the era of family linkage studies [1], as well
as the detection of complex structural rearrangements
that were difficult or impossible to characterize with pre-
vious array-based methods [2]. In this issue, authors
report the highly successful application of large-scale
sequencing approaches to the diagnosis of ciliopathies
[3] and disorders of sexual development [4], and to the
discovery, through linkage and exome sequencing, of a
novel gene for a complex neuropsychiatric disorder [5].
One of the crucial challenges in the genomic era of

rare disease diagnosis is determining exactly which of
the many potentially functional variants found in any pa-
tient’s genome actually contributes to their disease. This
process is complicated by the fact that existing databases
of reported disease-causing mutations are heavily con-
taminated by false-positive reports of pathogenicity, in
large part a hangover from an era of discovery in the
absence of large databases of variant frequency in the
general population. In this issue, Abouelhoda and col-
leagues [6] demonstrate that exome-sequencing data
from Saudi Arabian samples can help reclassify many
such variants, due to the largely unexplored nature of
the variation in the Middle Eastern region and the pres-
ence of autozygosity. Nevertheless, much work remains
to be done to clean up variant databases and to
empower accurate variant classification as we move into
an era of increasingly pervasive sequencing in both
disease patients and healthy individuals.
The second theme that emerges is the increasing recog-

nition that monogenic and complex disease are not
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discrete entities, but rather lie along a general spectrum of
human disease. For a growing number of alleles impli-
cated in monogenic disease, wider access to sequence data
has revealed the extent to which ascertainment through
densely affected pedigrees has led to a general overesti-
mation of penetrance. Genotypes previously thought to be
tightly coupled to significant early-onset pathology have
often turned out to be compatible with normal health. In
some cases, the variants are genuinely innocuous, and
there has been false attribution of their relationship to dis-
ease. In others, the variants concerned have variable pene-
trance, presumably reflecting the contribution of other
genetic, environmental, or stochastic factors that modu-
late their phenotypic impact. From the perspective of
common disease research, there are ever more examples
of genes that harbor an extended series of disease-
associated alleles, ranging widely in allele frequency and
effect size. In this issue, for instance, Jansen and colleagues
[7] describe how whole-exome sequencing in unrelated
subjects with non-familial Parkinson’s disease has revealed
multiple genes that contain homozygous (or compound
heterozygous) loss-of-function alleles, several of which
displayed disease-relevant phenotypes when manipulated
in appropriate cellular models.
The historical distinction between ‘Mendelian’ and

‘polygenic’ alleles is a throwback to 19th century argu-
ments between the Mendelian and biometrician schools
of evolutionary thought, a debate sustained into the
modern era by the restricted discovery range of the earli-
est genome-wide techniques—linkage analysis in multi-
plex pedigrees on the one hand, common variant
genome-wide association analysis on the other. With
sequence-based discovery now possible across a variety
of sample types—from pedigrees and trios to unselected
populations—the continuum of risk allele effects and
frequencies has been exposed, and can be exploited for
mechanistic and translational benefit [8]. In this issue,
Delahaye-Duriez and colleagues [9] demonstrate how
sets of genes implicated in both rare and common forms
of epilepsy converge on a pathway of proteins involved
in synaptic function, and Yu and colleagues [10] show
that a set of genes in which sequence variants are associ-
ated with serum amino acid levels overlap strikingly with
known Mendelian metabolic disease loci. A detailed
understanding of both rare, early-onset disease and com-
mon, later-onset disease will require a more holistic view
of genetic risk. As outlined in two other contributions,
the phenotypic consequences of sequence variation can
not only be observed at the level of the individual, but
also play out over many generations through their
impact on fecundity, as revealed through evidence of
selection [11, 12].
The identification of risk-alleles is a largely sterile

exercise until it is possible to use them to drive
improvements in the understanding of disease patho-
genesis. The third theme represented in the manu-
scripts published in this special issue is the accelerating
pace with which the integration of genome-scale anno-
tation is delivering biological meaning for the discov-
ered alleles. For many common diseases, it is becoming
increasingly clear that most of the genetic variance is
attributable to common variants. The variants respon-
sible overwhelmingly map in non-coding sequence, and
presumably act through the transcriptional regulation
of downstream effector transcripts, often in tissue-
specific ways.
The advent of high-throughput genome-scale tech-

nologies for mapping sites of regulatory impact
(through assays of chromatin accessibility and modifi-
cation, methylation status, transcription factor binding,
and the like) and their implementation across a wide
range of tissues (pioneered by the ENCODE consor-
tium and the Epigenome Road Map) has provided the
Rosetta Stone that links risk variant localization to
functional impact. The integration of genome-wide
genetic association data with genomic-scale annotation
data has often resulted in a virtuous cycle of mutual ad-
vantage, defining the tissues, and sometimes the spe-
cific cell types, that are central to the pathogenesis of
the disease of interest, supporting more accurate
fine-mapping of risk alleles and characterizing key
regulatory circuitry. Papers in this issue provide several
examples, including studies in schizophrenia [13] and
in inflammatory conditions [14, 15].
In addition, by linking regulatory elements to their

downstream targets, for example through detection of
cis-expression signals [16] and physical DNA–DNA in-
teractions [17], researchers have been able to make more
confident assignments regarding the effector transcripts
through which the various risk-alleles exert their pheno-
typic impact. Additional insights have flowed from the
ability to compare the genome-wide association profiles
of apparently diverse phenotypes, highlighting unsus-
pected overlaps, for example between the innate
immune system and autism spectrum disorder [18]. Key
to these advances has been the development of novel
tools for the statistical analysis and visualization of these
complex data sets; two such tools are described in this
issue [19, 20].
The next few years will bring increasingly massive gen-

omic data sets from patients and controls, as well as
more sophisticated mechanisms for the analysis and in-
tegration of a wide variety of genomic data types. We
can expect to see not only continued growth in the
number of disease genes identified, but also a deepening
of our understanding of the fundamental genetic archi-
tecture of human disease states, and a transformation in
our ability to move from associated genes, to pathways,
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to biology and clinical translation. The articles in this
special issue illustrate our community’s exciting progress
along each of these avenues.
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