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Abstract

Background: Ciliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made
in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of
their morbid genome, pleiotropy, and variable expressivity remains incomplete.

Results: We applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families,
with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy
genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant
model for these genes, we found no significant difference in their “mutation load” beyond the causal variants
between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further
identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss
of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a
functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes
(TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to
ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations,
the combined carrier frequency of which accounts for a high disease burden in the study population.

Conclusions: Our study increases our understanding of the morbid genome of ciliopathies. We also provide
the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and
other ciliopathies.

Keywords: Cilia, Bardet-Biedl, Joubert, Meckel-Gruber, Nephronophthisis, Acrocallosal, Senior-Loken, Polycystic
kidney, Oral-facial-digital, Founder, Variability, Modifier, Oligogenic

* Correspondence: medcaj@leeds.ac.uk; falkuraya@kfshrc.edu.sa
†Equal contributors
1Department of Genetics, King Faisal Specialist Hospital and Research Center,
Riyadh, Saudi Arabia
15Saudi Human Genome Project, King Abdulaziz City for Science and
Technology, Riyadh, Saudi Arabia
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Shaheen et al. Genome Biology  (2016) 17:242 
DOI 10.1186/s13059-016-1099-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-016-1099-5&domain=pdf
mailto:medcaj@leeds.ac.uk
mailto:falkuraya@kfshrc.edu.sa
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
The primary cilium is a microtubule-based projection
in non-dividing cells which serves as a sensory organ-
elle and signaling hub that mediates numerous physio-
logical roles [1, 2]. Originally viewed as a cellular
appendage of unclear significance, defects of the
cilium are now known to cause clinically recognizable
developmental syndromes (ciliopathies), the pheno-
typic spectrum of which involves nearly every body
organ [3, 4]. Although ciliopathies are conveniently
classified into specific syndromes, their phenotypes
are best viewed as a continuum that spans a pheno-
typic spectrum from embryonic lethality to isolated
late onset retinal degeneration [5]. Several studies sup-
port this view by demonstrating that individual cilio-
pathy disease genes are expressed broadly rather than
discretely across the spectrum, and that mutations
within the same gene can display marked phenotypic
differences across and even within families [6, 7]. The
mechanisms underlying these variations in expressivity
are unknown but likely involve modifier alleles as well
as stochastic events [8–10].
Annotating the morbid genome of ciliopathies can

greatly expand our knowledge about the non-redundant
components of the “ciliome,” and the annotation has
progressed dramatically with the advent of massive par-
allel sequencing [11]. However, the annotation of the
morbid genome remains incomplete, and the suggestion
that its missing part lies in non-Mendelian forms of in-
heritance remains controversial [12]. We have recently

shown that the hypothetical yield of exome sequencing
in the setting of autosomal recessive diseases is >95%
and that this can be achieved with the aid of positional
mapping where applicable [13]. The study of ciliopathies
in an inbred population, therefore, presents an oppor-
tunity to not only annotate the morbid genome of cilio-
pathies more fully but also test the possible contribution
of non-Mendelian inheritance to these conditions.

Results
Defining the ciliopathy phenotypic spectrum
Although we have actively sought and accepted referral of
cases with phenotypes that fall anywhere along the ciliopa-
thy spectrum, the contribution of individual syndrome
categories varied greatly among the 265 families recruited
in this study; e.g., Bardet-Biedl syndrome alone accounted
for 31% (Fig. 1). The large size of our cohort allowed us to
calculate the frequency of the main features for each
distinct ciliopathy syndrome (see Additional file 1: Figure
S1). Consistent with ciliopathies being a spectrum of
phenotypes, we show that 9% (23/265) of families did not
conform fully to a specific ciliopathy syndrome and were
labeled as similar to the closest matching syndrome.
However, seven families appeared to have recognizable syn-
dromic presentations that are distinct from all known cilio-
pathy syndromes (Additional file 2: Table S3). The clinical
features of the index (15DG2466) for one of these families
with mutation in NEK4 are described in Additional file 3:
supplemental clinical data. In three families, the affected
members were found to share similar phenotypes, which
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Fig. 1 A pie chart representation of the distribution of the different ciliopathy syndromes included in the study cohort
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have been recently published with the acronym DREAM-
PL to highlight the main clinical features (dysmorphic fa-
cies, renal agenesis, ambiguous genitalia, microcephaly,
polydactyly, and lissencephaly) [14, 15]. The fifth family
displayed congenital hydrocephalus, synpolydactyly, and
complex congenital heart disease, and no likely candidate
was identified on exome sequencing. The clinical pheno-
type of the affected member in family 6 comprised severe
microcephalic primordial dwarfism, lissencephaly, am-
biguous genitalia, and anophthalmia. Family 7 displayed
polydactyly and abnormal gyration characterizing malfor-
mation of cortical development. No candidate causal vari-
ant was identified in family 6 or 7.

The ciliopathy morbid genome
A likely causal variant was identified in 85% (225/265) of
the studied families, spanning 54 known genes that have
been previously linked to ciliopathy phenotypes (see
Additional file 2: Table S3). All affected individuals were
confirmed to carry biallelic variants in these genes except
for hemizygous mutations in OFD1. Of note, several of
these variants had evaded clinical sequencing, usually be-
cause they were intronic, and were subsequently identified
through our autozygome-guided RT-PCR analysis of the
target genes (Additional file 4: Table S2). In family 81, three
BBS members were negative on clinical exome, but through
homozygosity mapping and RT-PCR we identified the

absence of exons 13–17 of BBS1 only at the complemen-
tary DNA (cDNA) level. The splice site mutation in SIL1
(NM_022464.4: c.1030-9G >A: p. (Phe345Alafs*9)) was also
missed by clinical exome in family 254, and through homo-
zygosity mapping and RT-PCR we were able to confirm the
pathogenicity of this mutation. Family 18 represents a third
example of a family who had a negative result from the
clinical exome but was subsequently found to have a gen-
omic deletion (exons 8–15) in BBS2 (NM_031885.3:
c.805_1910del: p. (Val269Glufs*12)) through homozygosity
mapping and direct Sanger sequencing of BBS2. We esti-
mate that conventional exome sequencing could have
missed 10% of the likely causal variants identified in our
study based on the contribution of non-canonical splicing
mutations. This may explain why previous studies sug-
gested lower estimates for the total contribution of known
disease genes to the etiology of ciliopathies.
Of the remaining 40 families, nine (22.5%) had variants in

eight novel candidate ciliopathy genes (TXNDC15,
TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4,
and CELSR2). One of these candidate genes, TXNDC15,
was independently mutated in two families that share the
cardinal features of Meckel-Gruber syndrome (see Add-
itional file 3: supplemental clinical data). Furthermore,
through an international collaboration, we were able to
identify an additional Meckel-Gruber syndrome patient
with a homozygous truncating variant in this gene (Fig. 2

a b

Fig. 2 TXNDC15 is a novel gene that causes Meckel-Gruber syndrome. a Pedigree of the three families showing the consanguineous nature of
the parents. The index is indicated in each pedigree by a black arrow. b Upper panel: sequence chromatogram for the three homozygous mutant
alleles in TXNDC15 and their locations indicated in a schematic of TXNDC15. Lower panel: schematic of the TXNDC15 protein and the location of
the mutations in each specific domain. c Multisequence alignment of the deleted five amino acid residues (p. (Ser225_His229del)) showing high
conservation of this part of amino acids down to Taeniopygia guttata (boxed in red)
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and Additional file 3: supplemental clinical data). Although
TXNDC15 did not localize to the primary cilium or pericili-
ary regions (data not shown), patient fibroblasts (Fig. 3a) as
well as cells subjected to siRNA knockdown (Fig. 3b) had
aberrant ciliogenesis (Fig. 3c–f). TXNDC15 encodes a puta-
tive protein disulfide isomerase that contains a thioredoxin
domain. Proteomic studies showed that TXNDC15 inter-
acted with a total of 224 endomembrane-associated pro-
teins after filtering (Additional file 5: Table S4) that were
significantly enriched in known or predicted ciliary proteins
(SYSCILIA Gold Standard, SCGSv1 [16]; p = 2.34 × 10-18

hypergeometric test, observed 39, expected 7.02). Further-
more, loss of TXNDC15 prevented correct localization of
the TMEM67 ciliary receptor to the transition zone
(Fig. 3g and h). Taken together, our data support a causal
role for the biallelic truncating mutations we identified in

TXNDC15 and the Meckel-Gruber syndrome phenotype
in these patients.

Ciliopathies are Mendelian disorders
The high concordance between the percentage of cilio-
pathy patients with likely causal variants (85%, excluding
novel candidates) and the hypothetical maximum contri-
bution of genic (in contrast to mutations in non-genic
DNA) mutations to autosomal recessive diseases (95%,
see above Shamseldin et al. 2016, Genetics in Medicine,
in press) supports the view that ciliopathies are indeed
Mendelian disorders. To further test this, we asked
whether the burden of rare (MAF <0.01) variants in
known ciliopathy genes (total 89 genes) in our cohort is
higher than that expected by chance. To this end, we
calculated the burden of these alleles in all 31 individuals

a
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Fig. 3 Mutation in TXNDC15 causes ciliogenesis defect in patient cells and aberrant localization of TMEM67 using TXNDC15 RNAi. a and b
Immunofluorescence images of serum-starved fibroblasts from the affected individual in family 3 (II:1) and control fibroblasts (a) and TXNDC15
siRNA in human hTERT-RPE1 cells (b) stained for the ciliary marker ARL13B (green), gamma tubulin (red), and DNA (blue). Compared to controls,
fibroblasts from II:1 in family 3 and TXNDC15 siRNA knockdown showed a marked ciliogenesis defect. c Bar graph showing the significant reduction
in the number of ciliated fibroblast cells derived from individual II:1 from family 3. d Bar graph showing a significant reduction in the number of ciliated
TXNDC15 siRNA cells compared to negative control scrambled siRNA. e Bar graph showing the efficiency of TXNDC15 siRNA compared to negative
control scrambled siRNA (siScr) as quantified by qRT-PCR for the TXNDC15 transcript. f Bar graph showing the average increase in the cilium
length following TXNDC15 siRNA knockdown compared to negative control scrambled siRNA (siScr). g Immunofluorescence microscopy
images of serum-starved hTERT-RPE1 cells following TXNDC15 siRNA knockdown stained for the ciliary marker ARL13B (red), the transition zone
marker TMEM67 (green), and DNA (blue) showing the incorrect localization of the TMEM67 ciliary receptor to the transition zone compared to
negative control scrambled siRNA (siScr). h Bar graph showing an elongation in the total cilia length and elongation of the transition zone
due to mislocalization of TMEM67 (arrowheads in g). Statistical significance of pair-wise comparisons are indicated by * p < 0.05, ** p < 0.01, and
**** p < 0.0001 (panels c–f, Student’s paired t test for n = 3 biological replicates; and panel h, Pearson’s chi-squared test for n = 3 biological replicates)
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in our cohort with exome sequencing data and in a
“control” cohort of 64 intellectually disabled patients
from which ciliopathy cases have been specifically ex-
cluded, and found no statistically significant difference
between the two cohorts (average numbers of variants
per sample 7.0 and 6.98, respectively; two-tailed un-
paired Student’s t test, p = 0.91122). Not all rare alleles
are pathogenic, and it is possible that patients with cilio-
pathies are specifically enriched in pathogenic rare al-
leles, as previously suggested. In order to test this, we
repeated our analysis and only scored for alleles with
MAF <0.01 and CADD >20. Again, there was no signifi-
cant difference between the two cohorts (1.129 vs. 1.187
(t test: p = 0.68218)).

Phenotype/genotype correlation in ciliopathies
The spectrum of phenotypes observed for a given ciliopa-
thy gene ranged from broad, e.g., four distinct syndromes
were observed in the context of mutations in TCTN1, to
very narrow, e.g., all 16 mutations in BBS1 caused one sin-
gle phenotype (Fig. 4). Two different mutations in TCTN1
(NM_001082538.2:c.32_43del: p. (Val11_Leu14del) and

NM_001082538.2:c.1385dupT: p. (Trp463Valfs*58)) were
identified in patients with MKS, while a splice site muta-
tion (NM_001082538.2:c.342-2A >G) was identified in
two families, one with JS_like, and a fourth family with JS/
OFD. However, we also observed a trend where genes that
cluster in the same ciliary compartment tended to cause a
similar phenotype; e.g., mutations in the transition zone
genes CC2D2A, TCTN2, TMEM237, and CEP290 almost
always resulted in either Joubert or Meckel-Gruber syn-
drome phenotypes (Fig. 5).
One advantage of our study cohort was the opportun-

ity to observe the phenotypic expression of individual
alleles not only among several siblings due to large fam-
ily size, but also across many families due to the tribal
structure and founder effect in the study population
[17]. Thus, one can test the relative contributions of
either modifier alleles or stochastic effects by comparing
the degree of phenotypic consistency among siblings
(implying a minimal variation of modifier alleles) with
unrelated individuals who share the same founder allele
(maximum variation of modifier alleles). In families with
available clinical data on the affected siblings of the

Fig. 4 Circos image showing the different ciliopathy disorders in relation to known ciliopathy genes
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index, 97% (69/71 families) belonged to the same disease
category, compared to 92% (34/37) of unrelated patients
with ciliopathies who shared the same founder mutation.
Another approach for looking at interfamilial variability
is to calculate the concordance in the disease categories
between patients we report in this study and those previ-
ously reported with the same mutation. Again, for 78
such variants, we observed a very high concordance in
the disease category (76/78, 97%). Interestingly, the only
two variants for which we observed discordance between
the reported phenotypes and the ones we observe in our
cohort were in the compound heterozygous state with
other mutations (Additional file 2: Table S3). Taken to-
gether, these results strongly suggest that the final cilio-
pathy phenotype is primarily allele-specific and the
stochastic effect seems to play a more important role in
the phenotypic variability of ciliopathies than the effect
of modifier alleles.

Ciliopathies represent a significant disease burden
Ciliopathies are typically autosomal recessive disorders,
so their incidence is expected to increase with a higher
inbreeding coefficient. We have recently devised a

method to calculate the minimum burden of disease
using the carrier frequency of founder mutations among
a large cohort of patients with Mendelian diseases who
serve as controls for mutations unrelated to their under-
lying illness [18]. Using this approach, we show that
ciliopathies are among the most common autosomal re-
cessive diseases in Arabia, with a minimum disease burden
of 0.0004207 or 1 per 2376. (Additional file 6: Table S5 lists
the breakdown of this burden per ciliopathy syndrome.)
Of note, this is clearly an underestimate, since it does not
account for non-founder mutations, and even for founder
mutations there are a few observed in this study for which
no carrier frequency could be estimated due to their ab-
sence in our database.
We also exploited the highly consanguineous nature

of our population to challenge some of the previously
reported “disease mutations” by showing their homozy-
gous occurrence in individuals who lack ciliopathy phe-
notypes. Remarkably, of the “disease-causing” variants
listed in HGMD for known ciliopathy genes, 17 were
found to have a MAF of >0.01, rendering them com-
mon variants, and even for those with a MAF of <0.01
we have encountered 8 that were present at least once

Fig. 5 Circos image showing the different ciliopathy disorders in relation to ciliary compartment
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in the homozygous state in individuals with no ciliopa-
thy phenotype (see Additional file 7: Table S6). As a
control, we repeated the analysis using loss-of-function
variants (frameshift indels, stopgains, and +1/2 splicing)
and found that none of them achieved a MAF of >0.01
or was observed in the homozygous state in non-
ciliopathy patients.

Discussion
Interest in ciliopathies has increased dramatically con-
comitant with the increased appreciation of the role of
cilia in development and homeostasis. Previous large-
scale studies on ciliopathies have focused on the
characterization of the ciliary proteome, knockdown cel-
lular screens for ciliary genes, and functional genomics
in the zebrafish and mouse [19–23]. This is the largest
comprehensive phenomic and genomic study of ciliopa-
thies in humans. The depth of phenotypic analysis we
provide in terms of the phenotypic expression of each
ciliopathy complements previous studies [24–27]. The
marked phenotypic heterogeneity of ciliopathies has
been the subject of interest among human geneticists.
One view is that modifier alleles account for most of the
variability [28]. In this model, the presence of additional
ciliopathy alleles increased the severity of disease, and in
extreme situations, non-Mendelian inheritance patterns
were necessary for its very occurrence. Another model
holds that ciliopathies are similar to other Mendelian de-
velopmental disorders and are subject to stochastic
events, so that putative modifier alleles need not be lim-
ited to ciliopathy phenotypes. The unique structure of
our population, where the overwhelming majority of
pathogenic alleles were observed in the homozygous
state, allowed us to test the contributions of each model
to ciliopathy phenotypes. Our data support a more sig-
nificant role for stochastic effect than previously
thought. For example, interfamilial variation in the
phenotype of unrelated ciliopathy patients who shared
the same founder mutation was observed in only 8%
(<3% when patients in our cohort were compared to
previously reported patients with similar mutations).
This is only slightly higher than the 3% intrafamilial vari-
ability observed, which suggests that modifier alleles ap-
pear to only play a small role and that the stochastic
effect in these disorders needs to be taken into account.
Regardless of the small trend toward increased variability
in comparisons between families as opposed to within
families, the extremely high concordance in the two
groups strongly suggests that the final phenotype is pri-
marily determined by the disease allele. It is interesting
to highlight that in every instance of interfamilial as well
as intrafamilial variation, the phenotypes were always
caused by a splice site mutation. Thus, the discrepancy
in the phenotypes may be attributed to variability in the

replacement of the wild type by the mutant transcript,
which may vary even among different tissue types within
the same embryo during development. For example,
tissue-specific differences in splicing may contribute to
genotype-phenotype relationships for the common
CEP290:c.2991 + 1665A >G allele in non-syndromic ret-
inal disease, due to the very high levels of splicing diversity
in the human retina [29, 30].
As with many disorders with genetic and allelic het-

erogeneity, annotating the morbid genome of ciliopa-
thies has been challenging. Our data suggest that at least
10% of the likely causal alleles are cryptogenic and likely
to evade detection by routine clinical sequencing, in-
cluding exome sequencing as shown in several cases. In
an outbred population, where these cryptogenic muta-
tions likely exist in compound heterozygosity with more
readily identifiable alleles, there is a tendency to invoke
less likely mechanisms such as oligogenicity. However,
our data are highly consistent with a fully penetrant
autosomal recessive model, at least for the overwhelming
majority of ciliopathies. Another challenge, again not
limited to ciliopathies, is defining which allele is patho-
genic. Our use of a highly inbred control cohort allowed
us to challenge some of previously reported “disease mu-
tations” in ciliopathies by demonstrating their presence
in the homozygous state in ciliopathy-free individuals.
Thus, one should exercise caution in interpreting
HGMD-listed “disease mutations,” especially the class of
missense. Again, we suspect the large number of appar-
ently non-pathogenic ciliopathy alleles that are listed in
HGMD may contribute to erroneous interpretation of
their co-occurrence with pathogenic alleles as evidence
of atypical inheritance, which can complicate genetic
counseling unnecessarily.
The ability to identify novel disease genes is an estab-

lished benefit of whole exome sequencing (WES) [31].
The majority (75%) of the novel candidate genes we re-
port in this study (TXNDC15, EXOC3L2, FAM98C,
C17orf61, LRRCC1, and NEK4) harbor homozygous loss-
of-function variants. Additional lines of evidence include
the presence of independent mutations and independent
identification as ciliary genes using large knockdown
screens (TXNDC15). Although TXNDC15 is the only
novel gene with independent mutations in this study,
additional lines of evidence support the candidacy of the
other novel genes. For example, TRAPPC3 (part of the
transport protein particle (TRAPP) II complex, and a
novel candidate gene for BBS in this study) has been
shown to be required for ciliogenesis in retinal pigment
epithelial (RPE) cells [32]. Furthermore, the TRAP II
complex has also been shown to bind Rabin8 and target
it to the centrosome as a prerequisite step for ciliogen-
esis [33]. This is particularly relevant to the BBS pheno-
type observed, since Rabin8 is known to associate with

Shaheen et al. Genome Biology  (2016) 17:242 Page 7 of 11



BBSome, and its knockdown in zebrafish recapitulates
the BBS phenotypic readouts in this model system [33,
34]. Similarly, NEK4 interacts with the known ciliopathy
protein RPGRIP1L (mutations in RPGRIP1L are causa-
tive for Joubert and Meckel-Gruber syndromes), is local-
ized to the basal body in ciliated cells, and its deficiency
impairs cilium assembly [35]. CELSR2 is another pro-
posed candidate that has been shown to be required for
ciliogenesis [36]. Finally, LRRCC1, a novel candidate we
identified in a family with Joubert syndrome, is also
known as CLERC (centrosomal leucine-rich repeat and
coiled-coil containing protein) because of its established
role as a centrosomal protein in mitosis spindle
organization [37]. Future studies will be required to val-
idate the candidacy of these genes by investigating their
mutation spectrum in ciliopathy phenotypes. If proven
to be bona fide ciliopathy genes, the percentage of mo-
lecularly diagnosed ciliopathy patients in our cohort will
increase to 88%. This is a significant improvement in
diagnostic yield for a disease group that we show to be
extremely common in our population, but is also rela-
tively common in other populations.

Conclusions
In conclusion, we studied a large cohort that spans the
spectrum of ciliopathy phenotypes and identified likely
causal mutations in the majority. The enrichment of our
cohort for the homozygous occurrence of these alleles
allowed us to conduct a robust analysis of their pheno-
typic expression and the extent to which this is influenced
by modifiers. Our results show that the final phenotype is
primarily driven by discrete single gene mutations. Our
study adds many such mutations to the morbid genome
of these disorders, which we show to be associated with a
very high disease burden in our society.

Methods
Human subjects
We enrolled all patients referred to us (September
2008–April 2016) with phenotypes consistent or over-
lapping with known ciliopathy syndromes. The diagnos-
tic criteria we used to group patients under specific
ciliopathy diagnoses are presented in Additional file 8:
Table S1. Each patient was phenotyped using a checklist
that covers previously reported ciliopathy features (see
Additional file 4: Table S2). We excluded cases that were
referred with a known mutation to avoid inflating the
yield of the genomic characterization of our cohort. Al-
though isolated retinal dystrophy is a recognized ciliopa-
thy phenotype, we specifically excluded these patients
unless there were siblings with other ciliopathy features
because retinal dystrophy differs from classical ciliopa-
thies in being also caused by mutations in non-

ciliopathy genes. Pedigrees were drawn for all enrollees,
clinical photographs were obtained when possible, and
blood was taken from index, parents, and available sib-
lings and relevant relatives whenever possible. Skin biop-
sies were obtained for fibroblast culture in select cases.
The study was approved by the King Faisal Specialist
Hospital and Research Center (KFSHRC) IRB (RAC
2070023, 2080006, and 2121053) and the South York-
shire Local Research Ethics Committee (REC reference
11/H1310/1), and informed consent was obtained from
all participants prior to enrollment.

Mutation analysis
All patients and available relatives were genotyped
using the Axiom single nucleotide polymorphism (SNP)
chip platform to determine the candidate autozygome
as described previously [38, 39]. In parallel, the previ-
ously described “Mendeliome assay” was applied to
search for likely causal variants in previously reported
ciliopathy genes [40]. Briefly, we used highly multi-
plexed gene panels covering known ciliopathy disorders
as annotated by the Online Mendelian Inheritance in
Man (OMIM) catalog. The primers were designed using
Ion AmpliSeq Designer software (Life Technologies,
Carlsbad, CA, USA), synthesized and pooled into two
multiplex reactions based upon PCR compatibility min-
imizing likelihood of primer-primer interactions. The
libraries were run on an Ion Proton instrument
(Thermo Fisher, Carlsbad, CA, USA). When negative,
whole exome sequencing was performed and variants
were filtered essentially as described previously [40].
When negative, autozygome-guided RT-PCR of known
ciliopathy genes was attempted whenever an RNA
source was available to search for cryptogenic muta-
tions. In some cases, the causal variant was directly tar-
geted when a founder haplotype was identified at the
genotyping stage. Variants in known ciliopathy genes
were considered likely causal if they were nonsense,
frameshift, or canonical ± 1 or 2 splice sites, absent as
homozygous in the ExAC and Saudi genome databases,
and having a minor allele frequency (MAF) <0.01 in the
heterozygous state. For missense or in-frameshift vari-
ants, they had to be absent as homozygous in the ExAC
and Saudi genome databases and have a MAF <0.01 in
the heterozygous state, predicted to be pathogenic and
deleterious by the sorting intolerant from tolerant
(SIFT) and Polyphen tools, and with a Combined
Annotation Dependent Depletion (CADD) score >15.
For non-canonical splice site variants, they had to be
absent as homozygous in the ExAC and Saudi genome
databases, have a MAF <0.01 in the heterozygous state,
and either reported in the Human Gene Mutation
Database (HGMD) with confirmed abnormal splicing
effect on reverse transcriptase PCR (RT-PCR), or
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demonstrated by us on RT-PCR to result as a minimum
in (1) an aberrant band exclusive to the patient and
confirmed by sequencing and/or (2) complete absence
of the normal transcript in the patient despite the
proper use of internal controls.

Cellular characterization of ciliary genes
A standard ciliogenesis assay on patient-derived fibro-
blasts was performed as described previously [9]. To as-
sess the involvement of TXNDC15 in cilia formation,
we stained control and mutant fibroblasts for immuno-
fluorescent microscopy of the cilia marker ARL13B.
We modeled transcript loss by using small interfering
(siRNA) reagents against the human TXNDC15 tran-
script (ON-TARGETplus SmartPool, GE Healthcare: 5’-
AGAGGAAAGUGGUCGCUUA-3’, 5’-CGACAGAGGA
CUCCAAUAA-3’, 5’-CGGUAGUGACUGUACUCUA-3’,
and 5’-CCAGAAUUGGUUAGUGUGA-3’). We trans-
fected the immortalized ciliated cell line hTERT-RPE1
(retinal pigment epithelial), following previously de-
scribed protocols [41], and after 72 h incubation used
qRT-PCR to test abundance of TXNDC15 mRNA.
“Gateway” cloning (Thermo Fisher Scientific) was used to
insert a TXNDC15 “Gateway” entry vector (NM_024715.3,
obtained from GeneCopoeia Inc., Rockville, MD, USA)
into a destination construct that had C-terminal strep-II/
FLAG tags for tandem affinity purification (CTAP). Hu-
man hTERT-RPE1 cells were transfected with the
TXNDC15-CTAP expression construct, as described
previously [41], and stained for the FLAG tag. To iden-
tify protein interactants of TXNDC15, the cells were
lysed, and streptavidin- and FLAG-based tandem affin-
ity purification steps were performed as described pre-
viously [42]. Liquid chromatography-MS/MS analysis
was performed using an UltiMate 3000 Nano HPLC
system and a mass spectrometer (LTQ Orbitrap XL,
Thermo Fisher Scientific). The results from three bio-
logical replicates were filtered on the basis of n ≥ 2 pep-
tides in at least two replicates and absence in a negative
control dataset (pull-downs of RAF1-CTAP and
untransfected cells; Additional file 2: Table S3).
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main features for each distinct ciliopathy syndrome. (PPTX 70 kb)

Additional file 2: Table S3. Clinical and genomic data for all cases in
the study. (XLSX 83 kb)

Additional file 3: Supplemental clinical data: clinical details for the
affected cases with mutations in novel candidate genes. (DOCX 35 kb)

Additional file 4: Table S2. Checklist used to cover all previously
reported ciliopathy features. (DOCX 36 kb)

Additional file 5: Table S4. Identification of TXNDC15 interacting
proteins using tandem affinity purification (TAP). The list of 224 unique

proteins is significantly enriched in known or predicted ciliary proteins.
(XLSX 30 kb)

Additional file 6: Table S5. Ciliopathy disease burden in the
population for each pathogenic variant identified in known ciliopathy
genes. (XLSX 19 kb)

Additional file 7: Table S6. List of common variants with MAF of >0.01
that are listed as “disease-causing” variants in HGMD for known ciliopathy
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