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Single-cell sequencing in stem cell biology
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Abstract

Cell-to-cell variation and heterogeneity are fundamental
and intrinsic characteristics of stem cell populations, but
these differences are masked when bulk cells are used
for omic analysis. Single-cell sequencing technologies
serve as powerful tools to dissect cellular heterogeneity
comprehensively and to identify distinct phenotypic
cell types, even within a ‘homogeneous’ stem cell
population. These technologies, including single-cell
genome, epigenome, and transcriptome sequencing
technologies, have been developing rapidly in recent
years. The application of these methods to different
types of stem cells, including pluripotent stem cells and
tissue-specific stem cells, has led to exciting new
findings in the stem cell field. In this review, we discuss
the recent progress as well as future perspectives in the
methodologies and applications of single-cell omic
sequencing technologies.
erogeneous populations. Single-cell sequencing provides
Background
An individual cell is the smallest functional and universal
unit of organisms. Gene expression is regulated within or
between individual cells, and so, ideally, analyses of gene
expression would be performed using single cells; but
owing to technical limitations, such as the tiny size of an
individual cell, nearly all of the gene-expression studies
described in the literature (especially those at a whole-
genome scale) have been performed using bulk samples of
thousands or even millions of cells. The data based on
these ensemble analyses are valid; but the gene expression
heterogeneity between individual cells, especially at the
whole-genome scale, is still largely unexplored.
Cellular heterogeneity is a general feature of biological

tissues that is influenced by both physiological and
pathological conditions. Even a ‘pure’ cell type will have
heterogeneous gene expression because individual cells
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may occur in a range of extrinsic microenvironments
and niches that influence gene expression, because gene
expression may differ throughout the cell cycle, and be-
cause of the intrinsic stochastic nature of gene-
expression systems [1–4]. By definition, a stem cell is
characterized as both being capable of unlimited self-
renewal and having the potential to differentiate into
specialized types of cells. Stem cells are generally classi-
fied into pluripotent stem cells, which can give rise to
cells of all three germ layers (the ectoderm, mesoderm
and endoderm), and tissue-specific stem cells, which
play essential roles in the development of embryonic tis-
sues and the homeostasis of adult tissues. Pluripotent
stem cells in a mammalian early embryo are few in num-
ber; tissue-specific stem cells always form a minor pro-
portion of the cell population of a particular tissue or
organ. These minor cell populations are thus inter-
mingled with a variety of differentiated and intermediate
cell types in the embryonic or adult tissues, forming het-

powerful tools for characterizing the omic-scale features
of heterogeneous cell populations, including those of
stem cells. The beauty of single-cell sequencing tech-
nologies is that they permit the dissection of cellular
heterogeneity in a comprehensive and unbiased manner,
with no need of any prior knowledge of the cell
population.
In this review, we discuss the methodologies of re-

cently developed single-cell omic sequencing methods,
which include single-cell transcriptome, epigenome, and
genome sequencing technologies, and focus on their ap-
plications in stem cells, both pluripotent and tissue-
specific stem cells. Finally, we briefly discuss the future
of methodologies and applications for single-cell sequen-
cing technologies in the stem cell field.
Single-cell RNA-sequencing (RNA-seq)
technologies
Introduction of single-cell RNA-seq technologies
RNA-seq technology provides an unbiased view of the
transcriptome at single-base resolution. It has been
shown that the transcriptome of a mammalian cell can
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accurately reflect its pluripotent or differentiated status,
and it will be of great interest to explore the transcrip-
tome diversity and dynamics of self-renewing and differ-
entiating stem cells at single-cell resolution. The first
method for single-cell RNA-seq was reported in 2009,
only 2 years after standard RNA-seq technology using
millions of cells was developed [5]. Subsequently, many
other single-cell RNA-seq methods based on different
cell capture, RNA capture, cDNA amplification, and
library establishment strategies were reported, includ-
ing Smart-seq/Smart-seq2 [6, 7], CEL-seq [8], STRT-
seq [9, 10], Quartz-seq [11], multiple annealing and
looping-based amplification cycles (MALBAC)-RNA
[12], Phi29-mRNA amplification (PMA), Semirandom
primed polymerase chain reaction (PCR)-based mRNA
amplification (SMA) [13], transcriptome in vivo ana-
lysis (TIVA) [14], fixed and recovered intact single-cell
RNA (FRISCR) [15], Patch-seq [16, 17], microfluidic
single-cell RNA-seq [18, 19], massively parallel single-cell
RNA-sequencing (MARS-seq) [20], CytoSeq [21],
Drop-seq [22] and inDrop [23].
Methods allowing in situ single-cell RNA sequencing

or highly multiplexed profiling have also been developed
recently [24, 25]. Furthermore, methods for three-
dimensional reconstructed RNA-seq at single-cell reso-
lution have also been developed [26–28]. A summary of
these methods can be found in Table 1, and detailed
descriptions of them can also be seen in other recent
reviews [29–31]. All of these methods detect only
poly(A)-plus RNAs from an individual cell and thus miss
the important poly(A)-minus RNAs. Recently, we devel-
oped the SUPeR-seq technique, which detects both
poly(A)-plus and poly(A)-minus RNAs from an individ-
ual cell, and we used it to discover several thousands of
circular RNAs with no poly(A) tail as well as hundreds
of poly(A)-minus linear RNAs in mouse pre-implantation
embryos [32].
To obtain a comprehensive view of the heterogeneity

of a complex population of cells, a large number of in-
dividual cells must be sequenced. During the past sev-
eral years, the throughput of the single-cell RNA-seq
technologies has been greatly improved. The micro-
fluidic and robotic systems provide high-throughput
strategies that can handle hundreds of individual cells
[18–21]. Notably, two recently reported methods,
Drop-seq and inDrop, dramatically improve the
throughput to thousands or even tens of thousands of
individual cells for each experimental run by using a
combination of the one-bead–one-cell droplet and an
unique barcoding strategy [22, 23]. Very different cell
types can be distinguished by sequencing as few as
50,000 reads for each cell [33, 34], though deeper se-
quencing may be necessary to discriminate between
types of cells that have relatively subtle differences,
such as mouse embryonic stem cells and epiblast stem
cells.
Many bioinformatics tools that were designed for bulk

RNA-seq analyses are also applicable to single-cell RNA-
seq data; further tools have been designed specifically for
analyses of single-cell RNA-seq data. An in-depth review
of these approaches can be seen elsewhere [35]. Bio-
informatics tools have been used in the stem cell field to
identify different cell types and sub-populations, as well
as their marker genes, from the relatively noisy dataset.
Determining sub-populations of stem cells within a data-
set is achieved by methods for unbiased clustering and
differential gene expression analysis. Zeisel et al. [36] re-
cently described a biclustering-based algorithm called
BackSPIN that increases the accuracy of identifying cell
types from single-cell RNA-seq data. Grun et al. [37] de-
veloped another algorithm called RaceID, which is based
on a feature of the single-cell RNA-seq technique that
creates extremely low false-positive errors if cross
contamination is carefully controlled, especially when
unique molecular identifiers (UMIs) are applied. It does,
however, generate a high number of false negative errors,
where a gene is expressed in a cell, but missed by this
technique. These and other methods have greatly im-
proved the analyses of single-cell RNA-seq data in stem
cells or embryos. In addition, bioinformatic analysis
algorithms such as Monocle and Waterfall have been
developed to provide a time-serial reconstruction of a
developmental or differentiation process, also using
single cell RNA-seq datasets [38, 39]. These algo-
rithms produce a ‘pseudotime’ trajectory through a
reduced dimension data space by calculating a mini-
mum spanning tree.
Quantitative assessment of the current single-cell

RNA-seq methods shows that these methods have a
capture efficiency ranging between 5 % and 60 %
[10, 18, 19, 40, 41]. Owing to the biases of molecu-
lar capture and amplification, current methods for
the sequencing of single cells still have relatively
high technical noise, which is acceptable when
studying highly expressed genes but which masks the
biological variations of genes that are expressed at
low levels. Several studies have made great efforts to
improve signal-to-noise performance by optimizing
the efficiency of reverse transcription and PCR amp-
lification [7], by performing the reactions in nanoli-
ter volumes in a microfluidic system instead of in
microliter volumes in tubes [18, 19], through the use
of UMIs [10, 33], or by using spike-in of reference
mRNAs to discriminate the technical noise and real
biological variation signals [42]; nevertheless, there is
still much room for improvement.
In the past several years, single-cell RNA-seq methods

have been applied to a wide variety of systems, including



Table 1 Summary of single-cell RNA-seq technologies

Assays Cell capture strategies cDNA amplification
strategies

Target RNAs Poly(A) minus
RNA detection

Number
of cells

UMI Reference(s)

scRNA-seq Mouth pipette or FACS Polyadenylation followed
by PCR

Full-length mRNAs No 1–100 No [5]

Quartz-seq Mouth pipette or FACS Polyadenylation followed
by PCR

Full-length mRNAs No 1–100 No [11]

Smart-seq/
Smart-seq2

Mouth pipette or FACS Template-switch followed
by PCR

Full-length mRNAs No 1–100 No [6, 7]

MALBAC-RNA Mouth pipette or FACS MALBAC Full-length mRNAs No 1–100 No [12]

PMA Mouth pipette or FACS Rolling circle amplification Full-length mRNAs No 1–100 No [13]

SMA Mouth pipette or FACS Semi-random priming
followed by PCR

Full-length mRNAs No 1–100 No [13]

SUPeR-seq Mouth pipette or FACS Random priming followed
by PCR

Full-length mRNAs Yes 1–100 No [32]

Fluidigm C1 Microfluidic system Template-switch followed
by PCR

Full-length mRNAs No 100–1000 No [18]

Microfluidic
scRNA-seq

Microfluidic system Polyadenylation followed
by PCR

Full-length mRNAs No 100–1000 No [19]

STRT-seq Mouth pipette or FACS Template-switch followed
by PCR

5′ end of mRNAs No 10–100 Yes [9, 10]

CEL-seq Mouth pipette or FACS In vitro transcription 3′ end of mRNAs No 10–100 Yes [8]

MARS-seq Robotics and automation CEL-seq 3′ end of mRNAs No 100–1000 Yes [20]

CytoSeq Bead-based CEL-seq 3′ end of mRNAs No >1000 Yes [21]

Drop-seq Droplet- and bead-based Template-switch followed
by PCR

3′ end of mRNAs No >1000 Yes [22]

inDrop Droplet- and bead-based CEL-seq 3′ end of mRNAs No >1000 Yes [23]

TIVA In vivo mRNA capture based
on photo-activation

In vitro transcription Full-length mRNAs No 10–100 No [14]

FRISCR FACS or fixed cells SMART-seq2 Full-length mRNAs No 10–100 No [15]

Patch-seq Aspiration through
patch-clamp pipette

STRT-seq/SMART-seq2 5′ end of mRNAs or
full-length mRNAs

No 10–100 Yes/no [16, 17]

FISSEQ In situ RNA sequencing Rolling circle amplification Full-length mRNAs No 100–1000 No [24]

FACS fluorescence-activated cell sorting, FISSEQ fluorescence in situ sequencing, FRISCR fixed and recovered intact single-cell RNA, MALBAC multiple annealing and
looping-based amplification cycles, MARS massively parallel single-cell RNA-sequencing, PCR polymerase chain reaction, PMA Phi29-mRNA amplification, sc single-cell,
seq sequence, SMA semirandom primed PCR-based mRNA transciptome amplification, STRT-seq single-cell tagged reverse transcription, TIVA transcriptome in vivo
analysis, UMI unique molecular identifier
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early mammalian embryos [43–48], developing tissues
[33, 49–51], adult tissues [22, 36, 37, 52, 53], immune
cells [20, 21, 54–56], cancer cells [6, 57–59], and stem
cells that are either isolated in vivo [39, 60–63] or cul-
tured in vitro [23, 38, 64–67]. A flowchart of a typical
single-cell RNA-seq project is shown in Fig. 1. The work
of Zeisel et al. is an excellent and representative example
of these studies, showing that single-cell RNA-seq can
identify numerous sub-populations of cells that would
be missed if bulk RNA-seq were performed instead [36].
These authors unbiasedly sequenced the transcriptomes
of 3005 single cells isolated from the mouse primary
somatosensory cortex (S1) and the hippocampal CA1 re-
gion. A total of 47 molecularly distinct subclasses of
cells were identified, comprising nine major cell types
including S1 and CA1 pyramidal neurons, interneurons,
oligodendrocytes, astrocytes, microglia, vascular endo-
thelial cells, mural cells, and ependymal cells. This and
other studies demonstrate that the current single-cell
RNA-seq technology, even with much room for im-
provement, has become an established and powerful tool
that has practical applications in a wide variety of bio-
logical fields.

Pluripotent stem cells
Pre-implantation development
Mammalian pre-implantation development represents
the start of a new life and involves global gene expres-
sion changes during this process. Because the cell num-
bers during this developmental process are very limited,
single-cell RNA-seq provides an unprecedented oppor-
tunity to decipher gene expression dynamics during this



What is the physical size of the target cells (>3um or not)?
Is there any known method to isolate integrated living single cells?
What is the expected extent of the heterogeneity of the target 
cell population?
Does the target type of cells need to be pre-enriched by FACS 
or MACS?
Which single cell RNA-seq technique should be chosen?  
How much cost and resource need to be allocated?

Experimental
design

Avoid cross-contaminations.
Prevent RNA degradation during the processing.
Set positive controls  to confirm the quality of the reagents and 
validity of the procedure.
Set negative controls to confirm no systematic contamination.
Randomize samples to avoid potential batch effects.
Quality control of the amplified cDNA products by qPCR.
Choose the targeted samples for sequencing.
Determine the sequencing depth for each sample.

Performing 
the 
experiments

Bioinformatic 
analyses

Quality control of the sequencing data of the single cell samples
Choose proper bioinformatic tools/software for the subpopulation 
and/or spatiotemporal expression analyses
Use proper statistical analysis methods  to identify the differentially 
expressed genes

Verification 
of the 
discoveries

Choose independent methods to verify the gene expression 
patterns 
Further functional assays to get deeper biological insights

Fig. 1 Flowchart of a typical single cell omic sequencing project. A typical single-cell sequencing project comprises four major steps: experimental
design, performing the experiments, bioinformatic analyses and verification of the discoveries. Here we use a single-cell RNA-seq project as an
example. Note that if the project fails at any step, researchers should go back to previous steps to identify the cause of the failure and re-design
accordingly. In a real project, this process may need to be repeated several times. FACS fluorescence-activated cell sorting, MACS magnetic-activated
cell sorting, qPCR quantitative polymerase chain reaction

Wen and Tang Genome Biology  (2016) 17:71 Page 4 of 12
process. Comprehensive sets of transcriptome profiles
from both human and mouse cells undergoing pre-
implantation development have been generated [43–45].
The gene expression features of the maternal-zygotic
transition have been accurately captured. Although cells
of the same stage are relatively similar, there is evidence
that inter-blastomere differences occur as early as the
four-cell stage of mouse embryos [46, 68]. These differ-
ences may be functionally relevant to the first cell-fate
decision event of the pre-implantation embryo, which is
the segregation between the trophectoderm (TE) and
the inner cell mass (ICM). Later, the ICM further segre-
gates into primitive endoderm (PE) and pluripotent
epiblast (EPI) that give rise to all the cell lineages of the
embryo proper. Single-cell RNA-seq analysis offers a
comprehensive view of the transcriptome of these
divergent cell lineages. It has been shown that Id2 and
Sox2 are two early markers that are strongly activated in
TE and ICM cells, respectively, during the 16- to 32-cell
stage of the mouse embryo [69]. In addition, before the
segregation of PE and EPI, a precursor cell expresses
both the PE and EPI markers, leading to a model of
stochastic cell-to-cell expression heterogeneity that is
followed by signal reinforcement and commitment of
cell-fate determination [70].
Conservation of gene expression and differences be-

tween human and mouse pre-implantation development
have been identified on the basis of single-cell RNA-seq
data. One documented difference between human and
mouse development is the timing of zygotic genome ac-
tivation, which has been clearly verified using single-cell
transcriptome data. In a mixed background mouse
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(CAST/EiJ × C57BL/6 J), embryos showed rapid mater-
nal transcript clearance and zygotic genome activation at
the two-cell stage, as well as significant allele-specific
gene expression [45]. In humans, principal component
analysis (PCA) and differential gene expression analysis
confirmed that zygotic genome activation occurs be-
tween the four- and eight-cell stages [44]. A careful
comparative analysis revealed many other important dif-
ferences between human and mouse development [47].
For example, the transcription factor KLF17 is exclu-
sively expressed in the human EPI, and key components
of the transforming growth factor (TGF)-β signaling
pathway are highly enriched in human, but not mouse,
embryos. In addition, the key factors Id2, Elf5, and
Eomes are exclusively expressed in TE cells in the
mouse, but not in humans.

Embryonic stem cells
Both mouse and human embryonic stem cells (ESCs)
serve as excellent in vitro models for studying the self-
renewal ability and differentiation potential of pluripo-
tent stem cells. The ICM of blastocysts can form ESCs
when cultured in proper pluripotency maintenance con-
ditions, and the derivation of both human and mouse
ESCs have been traced using single-cell RNA-seq
methods [44, 64]. These studies demonstrate that the
outgrowth process is associated with prominent expres-
sion changes for transcriptional regulators and for genes
that are associated with pluripotency. A comparison be-
tween human embryonic stem cells (hESCs) and EPI
showed that genes that are involved in pluripotency are
conserved, but enriched for different pathways [44, 47].
Human EPI is enriched for oxidative phosphorylation
signaling, reflecting a difference in growth environment
from that of hESCs, which are cultured in vitro under
oxygen-rich conditions and preferentially switch to
glycolytic metabolism. The hESCs are enriched for the
regulation of cell proliferation and genes involved in the
fibroblast growth factor (FGF), MAPK and Wnt sig-
naling pathways, suggesting that the EPI and hESCs
have distinct mechanisms for maintaining the pluripo-
tency state.
Although ESCs are relatively homogeneous, they still

contain different sub-populations. Single-cell RNA-seq
analysis has revealed that many genes have variable
expression among individual mouse embryonic stem
cells (mESCs) [18, 19] and, importantly, has identi-
fied sub-populations that have distinct transcrip-
tomes [23, 65, 66]. By sequencing nearly 1000
individual mESCs using the droplet-barcoding approach,
Klein et al. [23] characterized several minor sub-
populations, including an epiblast-like sub-population,
a Prdm1-high sub-population and an Hsp90-high sub-
population. The same study also sequenced thousands
of cells to examine the differentiation of mESCs after
withdrawal of leukemia inhibitory factor (LIF), and
characterized the dynamic changes during differenti-
ation in several sub-populations that do not map to
any known cell type.

Primordial germ cells
Primordial germ cells (PGCs) are precursors of mature
germ cells—the oocyte and sperm. Single-cell RNA-seq
datasets of human PGCs from the migrating stage to the
gonadal stage have been created and reveal the dynamic
and balanced expression of both pluripotency genes and
germline-specific genes during PGC development [62].
Cell populations of early PGCs in mitosis are relatively
homogenous, whereas the later female PGCs are highly
heterogeneous during meiotic arrest, even within the
same embryo. This finding suggests that entry into mei-
otic arrest is unsynchronized for human female PGCs
in vivo. Unique features that distinguish human PGCs
from those of mice were also systematically explored.
For example, human early PGCs highly expressed
SOX15 and SOX17, whereas those from mice express
Sox2.

Tissue-specific stem cells
Tissue-specific stem cells reside in developing or differ-
entiated tissues. They also undergo self-renewal and
have the potential to differentiate into a variety of speci-
fied cell types. In the past 2 years, single-cell RNA-seq
methods have been applied to tissue-specific stem cells.
These studies have identified novel stem cell types and
have dissected cell heterogeneity within a ‘homogenous’
stem cell population.

Identification of novel stem cell types
The study by Treutlein et al. [49] on developing mouse
lung epithelium provides an elegant example of how a
novel stem cell type could be identified using the single-
cell RNA-seq approach. The alveolar type 1 (AT1) and
AT2 cells in the lung are two epithelial cell types that
play crucial roles in air exchange, but the identity of the
alveolar progenitors remains elusive. Treutlein et al. [49]
identified five distinct cell populations through evalu-
ation of 80 individual epithelial cells from distal lung re-
gions of E18.5 mouse embryos, which included four
known cell types: two bronchiolar lineages (Clara and
ciliated cells), and the alveolar type AT1 and AT2 cells.
An undefined and interesting fifth cell group co-
expresses the marker genes of AT1 and AT2 and is posi-
tioned between the populations of AT1 and AT2 cells on
the PCA plot, pointing to a bi-potential progenitor
population for AT1 and AT2 cells. These alveolar pro-
genitors have been verified by an independent set of ex-
periments, including immunostaining, lineage tracing
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and clonal analysis [71]. Furthermore, single-cell RNA-
seq data allowed Treutlein et al. [49] to characterize the
developmental intermediates from the bi-potential pro-
genitor to AT1 and AT2 cells completely, and even to
reconstruct a continual route of the differentiation
process to reveal the transcriptome dynamics.

Dissecting cell heterogeneity among a stem cell population
Single-cell RNA-seq has been used to dissect cellular
heterogeneity within a tissue-specific stem cell popula-
tion. These studies have revealed both similarities and
differences in the structures of the stem cell populations
of different tissue types. Hematopoietic stem cells
(HSCs) generate all blood lineages. Long-term reconsti-
tuting HSCs (LT-HSCs) are at the top of the
hematopoietic hierarchy and can undergo self-renewal
and division to replenish committed cells, which are
called short-term reconstituting HSCs (ST-HSCs).
Kowalczyk et al. [60] and Tsang et al. [61] have shown
that cell-cycle differences dominate the cell heterogen-
eity of each HSC type. The cell-cycle progression of
HSCs can be re-established using single-cell transcrip-
tome data, which provide a promising new approach for
studying the characteristics of quiescent and proliferative
stem cells. Analysis of non-cycling cells revealed a clear
difference between LT-HSCs and ST-HSCs. Within the
LT-HSCs, subgroups of cells that are associated with
markers of specific lineages also exist, as revealed by
analyzing only the hematopoietic genes, even though
these genes may still be related to the cell cycle.
The neural stem cells (NSCs) in the subventricular

zone and the subgranular zone of the dentate gyrus con-
tinually give rise to new neurons and glia in the adult
mammalian brain. The neurogenesis process starts from
quiescent NSCs (qNSCs), which become activated NSCs
(aNSCs) and, subsequently, early intermediate progeni-
tor cells (eIPCs). Using the ‘pseudotime’ concept to
analyze the single-cell transcriptome data, Shin et al.
[39] and Llorens-Bobadilla et al. [63] charted a continual
developing trajectory for this early neurogenesis process.
Like the work of Treutlein et al. [49], these two studies
again demonstrate that the single-cell RNA-seq approach
can provide a snapshot of the transcriptome dynamics
of a developmental process if reasonable numbers of
individual cells of the population are sequenced at a
given time point.
The continual self-renewal of the intestinal epithelium

is another well-established model for studying adult
stem cells. Lgr5-positive cells positioned at crypt bot-
toms serve as the stem cells that fuel the self-renewal
process. Grun et al. [37] sequenced nearly 200 green
fluorescent protein (GFP)-marked Lgr5-positive cells, and
found that these cells formed a single large homogenous
population with a few outliers, which indicates a distinct
population structure different from that of HSCs and
NSCs.
Perturbation of the stem cell populations under

non-physiological conditions has also been studied.
Llorens-Bobadilla et al. [63] analyzed NSCs in ische-
mic brain injury. In NSCs under physiological condi-
tions, these authors identified a transition from
dormant NSCs to primed-quiescent NSCs and then
activated NSCs. In injured NSCs, the authors found
that the proportion of dormant NSCs prominently de-
creases, whereas the primed-quiescent and activated
NSCs greatly increase. In another study, Kowalczyk
et al. [60] compared young and old mice and found
that ageing is associated with a decrease in the length
of the G1 phase of the LT-HSCs, which should be
linked to LT-HSC accumulation in older mice. In
addition, they found that the transcriptome states of
the ageing HSCs are inversely correlated with their
differentiation states, such that the old ST-HSCs are
similar to the young LT-HSCs [60]. Tsang et al. [61]
investigated the knockout phenotype of the transcrip-
tion factor Bcl11a and found abnormal proliferation
and selective elimination of lymphoid-competent HSCs in
Bcl11a-knockout HSCs [61]. Together, these studies dem-
onstrate that single-cell RNA-seq can provide rich infor-
mation on the structure of a stem cell population and its
behavior under different conditions, and offer great insight
into the function of tissue-specific stem cells.

Cancer stem cells
Cancer tissue usually contains sub-populations of cells
that have strong phenotypic and functional heterogen-
eity. The cancer stem cell (CSCs) concept holds that
there is a sub-population of highly malignant stem
cells at the top of the tumor cell hierarchy. The exist-
ence of these CSCs, however, is still controversial in
many cancer types. Single-cell RNA-seq has the po-
tential to help identify these cells and, more generally,
to provide new insight into complex intra-tumoral
heterogeneity. Patel et al. [57] sequenced 672 single
cells from five glioblastoma samples. Each tumor
showed high intra-tumoral cell heterogeneity in many
aspects, including copy number variations as well as
cell cycle, hypoxia, and immune response. By examin-
ing a set of ‘stemness’ genes, Patel et al. identified
continuous, rather than discrete, stemness-related expres-
sion states among the individual cells of all five tumors,
reflecting the complex stem cell states within a primary
tumor. Even though there have been only a few studies ad-
dressing the question of tumor transcriptome heterogen-
eity down to the single-cell resolution [57, 72, 73], a more
complete and accurate view of heterogeneity in various
cancer types, including the characteristics of the CSC, is
expected to be obtained in the near future.
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Single-cell epigenome sequencing technologies
The development, maintenance and differentiation of a
stem cell are orchestrated by epigenetic modifications of
its genome, including covalent modifications of genomic
DNA and histones. Cell-to-cell epigenetic variation is an
important layer of cell heterogeneity necessary for the
transcriptional regulation of gene expression. Of par-
ticular interest will be the epigenome heterogeneity
that underlies the transcriptome heterogeneity of cell
populations such as the pluripotent and adult stem
cells described above. In addition, how these hetero-
geneities are associated with changes in chromosome
conformation in individual cells is not yet known.
Conventional genome-wide epigenetic methods require
millions of cells and cannot identify epigenetic heterogen-
eity among different individual cells, but recent studies
have made great efforts in developing technologies to per-
form single-cell epigenome analysis (Table 2).

DNA modifications
DNA methylation is the major DNA modification in
the mammalian genome and plays important roles in
many developmental processes. Recently, single-cell
DNA methylome sequencing methods have been re-
ported by our group and others [74–76]. Our method
(scRRBS) is based on the reduced representation bi-
sulfite sequencing (RRBS) strategy [77], whereas the
methods of Smallwood et al. (scBS-seq) [75] and Far-
lik et al. (scWGBS) [76] are based on a post-bisulfite
adaptor tagging (PBAT) approach [78]. Using these
methods, we have charted the DNA methylation land-
scapes of human and mouse pre-implantation develop-
ment, as well as human PGC development [62, 74, 79].
These and other studies have comprehensively character-
ized the two global DNA demethylation waves that
occur during mammalian pre-implantation and PGC
Table 2 Summary of single-cell epigenome sequencing technologie

Epigenetic marks Assays Strategies

5mC scRRBS RRBS

5mC scBS PBAT

5mC scWGBS PBAT-like

Chromatin accessibility scATAC-seq ATAC-seq

Chromatin accessibility scATAC-seq ATAC-seq

Chromatin accessibility scDNase-seq DNase-seq

Chromatin structure Single-cell Hi-C Hi-C

Chromatin structure Single-cell DamID DamID

Histone modification Drop-ChIP Droplet-based C

5mC 5-methylcytosine, ATAC assay for transposase-accessible chromatin, BS bisulfite
DHS DNase I hypersensitive sites, MALBAC multiple annealing and looping-based am
tation bisulfite sequencing, sc single-cell, WGBS whole-genome bisulfite sequencing
development at the genome-scale and the single-base
resolution [80–82]. These studies have shown that
human PGCs at about 10 to 11 weeks after gestation
have lower methylation levels (6–8 %) than other
types of cells including blastocysts (~40 %). This
serial hypomethylated DNA methylome dataset of
human PGCs in vivo can be used as a standard refer-
ence for assessing the quality of PGC-like cells differ-
entiated from hESCs or human induced pluripotent
stem cells (hiPSCs) in vitro. Smallwood et al. [75]
demonstrated that integration of just 12 single oocyte
scBS-seq datasets can largely recover the major
pattern of their entire DNA methylome. Although
successful, the present single-cell DNA methylome se-
quencing methods have much sparser coverage than
bulk methods, and thus have much room for im-
provement. In addition to DNA methylation, recent
studies have uncovered hydroxymethylation (5hmC) as
well as 5-formylcytosine (5fC) and 5-carboxylcytosine
(5caC) modifications on genomic DNAs [83]. Although
whole genome scale methods for detecting these DNA
modifications on bulk cells have been established,
methods at the single-cell level still await development in
the near future.

Chromatin accessibility and structure
Genomic methods for assessing the chromatin acces-
sibility of bulk cell populations have been effective for
identifying active regulatory elements. Several recent
studies have adapted these methods to single-cell
resolution. The methods of Buenrostro et al. [84] and
Cusanovich et al. [85] (scATAC-seq) are based on
ATAC-seq (assay for transposase-accessible chromatin)
and rely on the ability of the prokaryotic Tn5-transposase
to insert preferentially into accessible chromatin regions
in the genome. The method used by Jin et al. [86] is based
s

Coverage Reference

0.5–2 M CpG sites [74]

0.5–10 M CpG sites [75]

0.5–10 M CpG sites [76]

Average 73,000 unique fragments
mapping to genome

[84]

50–6000 DHS sites [85]

Average 317,000 unique fragments
and 38,000 DHS

[86]

Not available [87]

Not available [88]

hIP-seq 1000 H3K4me2 peaks [89]

sequencing, ChIP chromatin immunoprecipitation, DamlD Dam identification,
plification cycles, PBAT post-bisulfite adaptor tagging, RRBS reduced represen-
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on the more conventional DNase sequencing approach
(scDNase-seq). scDNase-seq appears to detect more open
chromatin regions per individual cell than scATAC-seq. In
addition, chromosome structure capture technologies
have recently been adapted to single cell analysis [87, 88].
These methods, which have been shown to distinguish
correctly between ESCs and other cell types at different
chromatin state layers [86], should be applied to dissect
the heterogeneity of chromatin states of stem cell popula-
tions in the near future.

Histone modifications
Histone modifications play essential roles in the regula-
tion of gene expression in stem cells. Chromatin immu-
noprecipitation followed by sequencing (ChIP-seq) is a
widely used method for mapping histone modifications
at the whole-genome scale. Rotem et al. [89] recently
adapted ChIP-seq to a single-cell analysis by combining
droplet and barcoding strategies (Drop-ChIP). A strin-
gent negative control using a non-specific IgG antibody
was not performed side-by-side for murine embryonic fi-
broblasts (MEFs) or ESCs, however, leaving the potential
non-specific noise in their single-cell ChIP-seq dataset
unresolved. Drop-ChIP is able to detect only approxi-
mately 1000 H3K4me3 peaks per cell, corresponding to
a peak detection sensitivity of approximately 5 %. Never-
theless, the method is capable of separating mouse ESCs
into three sub-populations that have distinct H3K4me2
signals over loci bound by pluripotency-associated tran-
scription factors such as Oct4, Sox2, and Nanog, and
differentiation-associated transcription factors such as
FoxA2, as well as epigenetic repressors including Poly-
comb and CoREST. The first group of cells has the high-
est signal for these pluripotency signature genes, the
second group has intermediate signals, and the third
group has the lowest signals, while H3K4me2 signals for
differentiation and epigenetic repressor signature genes
are reversed. Thus, these sub-populations may have dis-
tinct chromatin states that are related to pluripotency
and differentiation priming. This finding implicates a
new layer of cell heterogeneity in the epigenome of
ESCs. Further improvement of single-cell epigenome se-
quencing technologies will provide a deeper understand-
ing of the cell heterogeneity of chromatin states in ESCs
and other types of stem cells.

Single-cell genome sequencing technologies
The genomes of individual cells carry another layer of
information that is useful in revealing the development
and heterogeneity of a stem cell population: the cell
lineage. During development, one stem cell gives rise to
many specialized cells through continuous cell division
and differentiation. During each cell division, replication
errors may occur. Although such errors (replication
mutations) occur at an extremely low frequency in nor-
mal mammalian cells (0–1 mutations per cell division),
any replication mutations that are detected in individual
progeny cells can be used to trace the developmental
lineage of those cells. A cell lineage tree, such as the
detailed lineage tree that has been illustrated for
Caenorhabditis elegans, can greatly help to illustrate a
developmental process.
To detect replication mutations in individual cells, a

single-cell whole-genome amplification is necessary in
order to get enough material for sequencing analysis.
This can be accomplished using methods that include
degenerate oligonucleotide-primed polymerase chain re-
action (DOP-PCR) [90], multiple displacement amplifi-
cation (MDA) [91], MALBAC [92], microfluidics-based
MDA [93–95] and MDA for G2/M nuclei (Nuc-seq)
[96, 97] (Table 3). Detailed and elegant reviews of
these methods can also be seen elsewhere [98, 99].
Single-cell genome sequencing has been applied to hu-

man germ cells for sperm and oocytes to study meiotic
recombination, aneuploidy, and the mutation rate of
these cells [93, 100, 101]. These studies have generated
the first personal recombination maps of individual men
and women and have detected aneuploidy during human
gametogenesis [93, 100, 101]. Behjati et al. [102] have
also applied genome sequencing for lineage tracing of
the development of normal cells. In this study, the early
cell lineage and the contribution of these early cells to
adult tissues were elucidated by whole-genome sequen-
cing of 25 single-cell-derived organoid lines from the
mouse gut and prostate. Single-cell whole-genome se-
quencing has also been used to study tumor cells. Clonal
evolution of a tumor can be elucidated on the basis of
the copy number variation (CNV) and single-nucleotide
variation (SNV) of single tumor cells [96]. How to
authenticate a SNV accurately within a single cell with
essentially no false-positive calls remains a challenge.
Future improvement of single-cell whole-genome-
sequencing technologies will help resolve this issue
and will promote the application of this technology
for the lineage tracing of stem cells by comprehensively
identifying genomic variations within each single stem or
differentiated cell in normal or cancerous tissue.

Conclusions
Despite the fact that single-cell sequencing methods
have been widely applied to dissecting the heterogeneity
of stem cells, all of the currently available single-cell
omic sequencing technologies are clearly not ideal.
There exist significant technical noise and amplification
errors, and they provide relatively low coverage when
compared to bulk sequencing methods. This is expected,
as the whole field is still in its infancy beginning only
7 years ago. From this perspective, it is amazing that the



Table 3 Summary of single-cell genome sequencing technologies

Assays Strategies Principles Reference(s)

DOP-PCR Degenerate oligonucleotide-primed PCR Exponential [90]

MDA Phi 29 DNA polymerase-based MDA Exponential [91]

MALBAC Multiple annealing and looping-based amplification cycles Quasi-linear [92]

Microfluidic MDA MDA in a microfluidic chamber Exponential [93]

MIDAS MDA in hundreds to thousands of nanoliter wells Exponential [94]

eWGA MDA in millions of picoliter droplets Exponential [95]

Nuc-seq MDA for single cells in S phase Exponential [96, 97]

DOP degenerate oligonucleotide-primed, eWGA emulsion whole-genome amplification, MALBAC multiple annealing and looping-based amplification cycles, MDA
multiple displacement amplification, PCR polymerase chain reaction
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single-cell omic sequencing field has already had such
great influence and has contributed so tremendously to
numerous biological fields. There is huge room for add-
itional development and improvement of the technologies.
Amplification error is a crucial parameter and an issue

that limits the accuracy of current single-cell omic se-
quencing technologies, all of which are based on the
pre-amplification of the nucleic acids in individual cells
before deep sequencing. After amplification, the single
cell being analyzed is already ‘destroyed’; thus, the re-
sults cannot be verified in the same individual cell. Some
reports use Sanger sequencing to re-sequence the ampli-
fied product from the same individual cell for selected
loci at which point mutations have been called. Never-
theless, this strategy can detect only the next generation
sequencing errors, leaving the single-cell amplification
errors concealed and untestable. The other strategy is to
use several cells to verify each other and to count only
the SNVs that are called in three or more individual cells
[92, 96]. Unfortunately, this approach is possible only for
cells that can be cultured and amplified at a clonal level
in vitro, which is very difficult, if not impossible, for the
majority of types of primary cells. If such cell prepar-
ation is not possible, this approach will remove the real
SNVs that are unique to an individual cell and will
severely limit the applications of single-cell omic se-
quencing technologies. An ideal single-cell genome-
sequencing technology would accurately identify both
common and ‘private’ SNVs within an individual cell
without any false positives resulting from amplification
errors. We propose that, in the near future, better
single-cell omic sequencing technologies should permit
several repeated measurements of the original copy of
the nucleic acids within an individual cell. In this way,
the amplification errors of sequencing a single cell could
be accurately and directly evaluated and determined
within the same cell. This would also permit the authen-
tic mutation in an individual cell to be firmly called and
verified with essentially no false positives.
It is also important to develop a full set of new

bioinformatics tools that are specifically designed for
analyses of single-cell omic datasets. These bioinformat-
ics tools should carefully consider both the cons of the
single-cell omic datasets, such as high technical noise
and high false-negative rates, and the pros of these data-
sets, such as high sampling numbers and UMIs or spike-
in based absolute counting. Despite being valuable,
current ‘pseudotime’ analyses have problems in resolving
some of the intermediate states during differentiation,
especially when these states are dramatically different
from both the earlier stem cell state and the later com-
mitted state. This is due to the fact that single-cell tran-
scriptome analysis by its nature provides only a snapshot
of the gene expression profile for each individual cell,
which is an intrinsic disadvantage of this technique
when compared with time-lapse imaging methods. As
the technique can offer a whole-genome-scale gene
expression profile, and because the gene-expression
changes in an individual cell at the whole-transcriptome
scale can usually be assumed to be ‘continual’ and trace-
able within a short time interval, one possible resolution
for the ‘snapshot’ problem is to sample the cell population
much more intensely, ideally every hour or so. Including
the following assumption into the pseudotime algorithms
is also likely to be helpful: the later differentiation time
point will very probably contain differentiation-delayed re-
sidual stem cells of the earlier time point. By contrast, the
earlier time point is very unlikely to contain fully differen-
tiated cells. For example, during ESC differentiation into
liver cells, functional liver cells are very unlikely to be
found in the population after just 1 or 2 days; but in the
several-week differentiated cell population that contains
functional liver cells, it will still be possible to find some
residual stem-like cells. Adding this constraint will prob-
ably help to resolve the true differentiation pathway of
stem cells.
Single-cell multiple omics sequencing technologies

have also been developed recently. These methods are
capable of simultaneously obtaining information from a
single cell on the transcriptome and genome (G&T-seq)
[103], or on the transcriptome and DNA methylome
(scM&T-seq) [104], or even on all three of these omics
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(genome, DNA methylome, and transcriptome; scTrio-
seq) [73]. New methods covering more layers of different
omics are expected to emerge in the near future. These
methods are invaluable for elucidating the relationship
between different layers of omics in an individual cell.
When they become routinely available, permitting the
precise recovery of genome, epigenome and transcrip-
tome information from the same individual cell, an ideal
approach would be to use single-cell genome sequencing
data to perform lineage tracing to reconstruct the pedi-
gree of the cells during stem cell differentiation in vivo.
Then, transcriptome data from these cells could be
analyzed and used to identify different cell types or sub-
populations in the complex tissue. The epigenome infor-
mation from the same set of single cells could be used
subsequently to investigate how different epigenetic
layers regulate transcription. Finally, to build a causal re-
lationship between genotype and phenotype, it will be
ideal to knockout key component genes for stem cells
in vivo using gene-editing technologies. Single-cell mul-
tiple omics sequencing at serial time points during the
development and differentiation process of stem cells
could then be used to reconstruct the core gene regu-
lation network within each individual cell during the
differentiation process. The phenotype–genotype rela-
tionship for each gene within each individual cell, or
between different individual cells, will finally permit
us to understand thoroughly the complexity and
beauty of the gene regulation network under both
physiological and pathological conditions, and will
provide us with new insights into the biological basis
of human development and diseases.
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