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Abstract

Understanding the mutational heterogeneity within tumors is a keystone for the development of efficient cancer
therapies. Here, we present SCITE, a stochastic search algorithm to identify the evolutionary history of a tumor from
noisy and incomplete mutation profiles of single cells. SCITE comprises a flexible Markov chain Monte Carlo sampling
scheme that allows the user to compute the maximum-likelihood mutation history, to sample from the posterior
probability distribution, and to estimate the error rates of the underlying sequencing experiments. Evaluation on real
cancer data and on simulation studies shows the scalability of SCITE to present-day single-cell sequencing data and
improved reconstruction accuracy compared to existing approaches.

Background
Tumor progression can be described as a dynamic evo-
lutionary process acting at the level of individual cells
[1–3]. A tumor typically arises from a single founder
cell whose distinct set of genetic (and epigenetic) lesions
gives it a growth advantage over the surrounding cells
and helps it to evade the patient’s immune response. As
a consequence, the clone arising from this cell expands
and, over the course of time, the descendant cells develop
further into subclones by acquiring additional somatic
mutations [4]. The subclones compete against each other
for resources in the tumor environment and the more
successful ones will replace others until eventually they
themselves are out-competed by new subclones [4, 5]; see
also Fig. 1a.
The genetic diversity arising from this process, referred

to as intra-tumor heterogeneity, is believed to be a major
cause of relapse after cancer treatment [6, 7]. The com-
mon explanation is that drug therapy often targets the
dominant subclone at the time of diagnosis, and upon
its remission, either an expansion of previously sup-
pressed subclones, non-susceptible to the treatment, or
an emergence of new resistant subclones is likely to hap-
pen [8]. For monoclonal tumor progression, the tem-
poral order in which specific mutations have occurred
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has been shown to be informative for disease progres-
sion and susceptibility to drug therapy [9]. Therefore, a
more comprehensive understanding of the genetic diver-
sity of individual tumors and their evolutionary history is
likely to be a key component in the design of personalized
cancer therapies that are more effective [6, 10, 11].
All cells in a tumor are related via a binary genealogi-

cal tree (Fig. 1b). To reconstruct their evolutionary history
based on single-nucleotide variants (SNVs), the infinite
sites assumption is typically made, which implies that
the mutation profiles of the cells (Fig. 1c) form a perfect
phylogeny. A perfect phylogeny exists if for all pairs of
mutations i1, i2, the set of cells having mutation i1 and the
set of cells having mutation i2 are either disjoint or one is a
subset of the other [12]. Most approaches to reconstruct-
ing tumor phylogenies focus on the partial (temporal)
order among the mutation events (Fig. 1d). This tree type
implicitly defines the set of possible subclones via the
mutation profiles that can be read from the tree by col-
lecting the mutations on the path from the root to any
other node in the tree. Not all possible subclones, in par-
ticular those at inner nodes, need to have surviving cells.
Also, by chance, cells from surviving subclones may not
be sampled.
The main challenge in obtaining knowledge on

intra-tumor heterogeneity is that common bulk high-
throughput sequencing admixes the DNA of millions of
cells in a sample before sequencing. The mutation pro-
files obtained from themixture constitute an average of an
unknown number of unknown subclones each making up
an unknown fraction of the mixture [13]. Therefore, tree
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Fig. 1 Tumor evolution and cell phylogeny. a Schematic representation of tumor evolution with time progressing downwards. Stars denote new
mutations leading to subclone expansion. The quadrangles belong to minor extinct subclones with no traces in the present-day populations. The
mutations founding these clones may not have induced a sufficient growth advantage to have surviving descendant cells or may have been lost by
chance. The gray discs on the bottom denote single cells sequenced after tumor removal. The stars they contain indicate the mutations observed in
the cell. b Binary genealogical tree of the sequenced cells. An empty disc represents a normal somatic cell, which is an outgroup for the tumor cells. c
Binary mutation matrix representing the mutation status of the sequenced tumor cells. A zero entry denotes the absence of a mutation in the
respective cell, while a one denotes its presence. d The perfect phylogeny represented as a mutation tree, the partial (temporal) order of the
mutation events. Mutations are summarized in a single node when their order is unidentifiable from the sampled cells, as is the case here for the
two top-most mutations with the matrix from (c). e Hierarchical subclone structure. Cells with identical mutation profiles cluster into subclones,
which serve as taxa in this phylogenetic tree. fMutation tree with single-cell samples attached. g Noisy mutation matrix with missing values. The red
numbers indicate flipped mutation states with respect to the true mutation matrix in (c). For 0 → 1, a false positive, the mutation is called but not
present in the cell. For 1 → 0, a false negative, the mutation is not called but present in the cell, most likely due to allelic dropout during the DNA
amplification. The red dash indicates a missing value; it is unknown whether the site is mutated or in the normal state in this cell

reconstruction needs to be completed by a deconvolu-
tion of the mixed signal to identify the subclones, the taxa
of the tree. In the past years, an abundance of tools has
been developed to study subclone composition in mixed
samples [14–19]. Among the approaches that additionally
reconstruct the evolutionary relationships, the majority
separates subclone estimation and tree reconstruction
[20–24], while others combine both tasks into a single step
[25–27]. The typical output of these tools would be one
or several trees as in Fig. 1d, augmented with the esti-
mated prevalence of the different subclones in the tumor.
Signals from multiple samples from different locations in
the tumor increase the statistical power [24–27]. Samples
taken from different time points are useful as well [28] but
are usually not available for solid tumors, as biopsies are
typically taken only once, at the point when the tumor is
removed from the patient.

Approaches using mixed samples provide valuable
insights into intra-tumor heterogeneity. However, their
resolution is inherently limited and inference of both com-
plex subclone structures and low-frequency subclones
remains difficult [13, 29]. The advent of single-nucleus
sequencing techniques has started to change the situation.
Here, the taxa are known in the form of the individual cells
sequenced from a tumor. However, the data we obtain
from single-cell sequencing experiments are notoriously
error-prone, in particular the false negative rate can be
extremely high (≥10 %) due to the high allelic dropout
rate in the DNA amplification process. The false positive
rate is also elevated in comparison to bulk sequencing.
Lastly, unobserved sites can be a problem. For example,
58 % of the data points are reported as missing due to
low quality in an early single-nucleus sequencing data
set [30] thus giving no information on whether the site
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is mutated or not in the respective cell. This combina-
tion of error types prohibits the application of standard
perfect phylogeny reconstruction approaches. While gen-
eralizations of the perfect phylogeny problem to deal with
imperfect data exist, they are typically NP-hard, and mod-
ify the input data in the binary mutation matrix, either by
finding the minimum number of entries that need to be
changed to remove all inconsistencies [31], or by remov-
ing the minimum number of samples (taxa) to remove all
the inconsistencies [32].
Probabilistic approaches are an alternative to make use

of all information contained in the (inconsistent) data.
In addition, using a Bayesian scheme, the whole poste-
rior tree distribution instead of just a single tree can be
obtained and model parameters such as the error rates
of the sequencing experiments can be learned. Bayesian
approaches typically use polynomial-time Markov chain
Monte Carlo (MCMC) sampling heuristics to explore a
(super-)exponential search space.
A fully Bayesian approach is BitPhylogeny [33], which

uses non-parametric clustering in combination with a
tree-structured stick-breaking process to identify sub-
clones and their evolutionary relationships. Unlike tree-
based approaches for mixed samples, BitPhylogeny
clusters samples into subclones and sets these in a phylo-
genetic relation (Fig. 1e).
Kim and Simon [34] introduced a pairwise ordering

test for mutations in an attempt to find the best fit-
ting tree from noisy and incomplete single-cell data [30].
Their approach reconstructs a mutation history as in
Fig. 1d, also referred to as mutation tree. The restric-
tion to pairwise tests results in an efficient polynomial-
time algorithm but comes at the cost of a potential
loss in reconstruction quality, as all information from
more complex relations than pairwise order is discarded.
Instead of using pairwise orders, one could consider test-
ing the ordering of triplets of nodes and then higher
groupings.
Here we propose a likelihood-based approach to test

the entire mutation tree at once and perform a stochas-
tic search to find the best fitting tree. We introduce
SCITE (Single Cell Inference of Tumor Evolution), a
flexible MCMC sampling scheme that allows us to com-
pute the maximum likelihood (ML) tree plus attachment
points of the samples, sample from their posterior, or
treat mutation trees with the attachment points marginal-
ized out. These can be combined with learning the error
rates of the sequencing experiments. We evaluate SCITE
on real cancer data, showing its scalability to present-
day single-cell sequencing data and its improved results
over BitPhylogeny [33], the approach of [34], classic per-
fect phylogeny reconstruction, and methods designed for
bulk-sequencing data. In addition, we estimate from sim-
ulation studies the number of cells necessary for reliable

mutation tree reconstruction, which could inform the
design of future single-cell sequencing projects.

Results and discussion
Tree inference from single-cell mutation profiles
We first provide a brief description of our approach to tree
inference from single-cell mutation profiles. We start with
amodel for representing single-cell mutation histories and
the likelihood-based approach to deal with sequencing
errors. Then we give an overview on the different variants
of theMCMC sampling scheme implemented in SCITE. A
more technical description of SCITE is in the “Methods”
section.

Model of tumor evolution and tree representation
We restrict the evolutionary model to point mutations in
this work and make the infinite sites assumption, which
states that every genome position mutates at most once in
the evolutionary history of a tumor. No further constraints
are necessary, in particular no assumption on a mono-
clonal origin of the tumor is made, a core assumption in
tree reconstruction from mixed samples.
We represent the mutation status of m single cells at n

different loci in a binary n × m mutation matrix E where
a 1, respectively a 0, at entry (i, j) denotes the presence,
respectively the absence, of mutation i in cell j (Fig. 1c).
With the exclusion of convergent evolution due to the
infinite sites assumption, thismatrix defines a perfect phy-
logeny of the single cells. This means that there exists a
rooted binary tree with the cells as leaves in which every
mutation can be placed on one edge such that the muta-
tion status of every leaf equals the set of mutations on its
path to the root (Fig. 1b). Mutations present in all cells can
be removed from the data as their location in the tree is
known. The same is true for mutations observed only in a
single cell. These are directly associated with the cell and
non-informative in the tree reconstruction. For example,
the mutation matrix from Fig. 1c reduces to:

E =
⎛
⎝
s1 s2 s3 s4 s5 s6 s7

M1 1 1 1 0 0 0 0
M2 0 0 0 0 1 1 1
M3 0 0 0 0 1 1 0

⎞
⎠, (1)

where we now represent the remaining three mutations
as M1, M2, and M3. In general, the binary tree defined by
the matrix E will not be unique. In the example in Fig. 1b,
since the three left-most leaves all have the samemutation
status, their branching order in the tree is, therefore, arbi-
trary. Also the correct placement of the fourth leaf is not
unique, as it has no mutation other than the ones shared
by all samples. It could equally well branch off in the left
subtree after the two ubiquitous mutations instead of the
right one. A more compact tree representation of E is a
mutation tree T, which represents the mutations as nodes
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and connects the nodes according to their order in the
evolutionary history. An empty node is used to indicate
the root (Fig. 1d). The mutation tree can be seen as the
perfect phylogeny tree, where instead of placing the muta-
tions along the edges we encapsulate them inside internal
nodes. This slight change in representation facilitates our
inference later. The mutation tree can be augmented with
the sequenced cells by attaching them to the node that
matches their mutation state (Fig. 1f). The order of muta-
tions shared by the exact same set of cells is unidentifiable
in the mutation tree, as is the case for the two top-most
mutations in Fig. 1f. Such subsets of mutations are sum-
marized in a single node, here highlighted as a shaded
box.

Observational errors
In real data, we do not observe a perfect mutation matrix
(Fig. 1c) but a noisy version of it (Fig. 1g), which we denote
by D in the following. If the true mutation value is 0, we
may observe a 1 with probability α (false positive), and
if the true mutation value is 1, we may observe a 0 with
probability β (false negative) such that

P(Dij = 0|Eij = 0) = 1 − α, P(Dij = 0|Eij = 1) = β ,
P(Dij = 1|Eij = 0) = α, P(Dij = 1|Eij = 1) = 1 − β .

(2)

Assuming the observational errors are independent of
each other, the likelihood of the data given a mutation tree
T, knowledge of the attachment of the samples σ , and the
error rates θ = (α,β) is then

P(D|T , σ , θ) =
n∏

i=1

m∏
j=1

P(Dij|Eij), (3)

where E is the mutation matrix defined by T and σ .
For the posterior,

P(T , σ , θ |D) ∝ P(D|T , σ , θ)P(T , σ , θ), (4)

we can factorize the prior, P(T , σ , θ) = P(σ |T , θ)P(T , θ),
and we assume independence of the error rates to set
P(T , σ , θ) = P(σ |T)P(T)P(θ) so that the attachment
prior P(σ |T) depends on T. Such a prior might be useful if
one suspects that cells are more likely to be sampled from
later stages in tumor development and lower down in the
tree. Here though we use a uniform attachment prior.

MCMC sampling
Ourmodel for learningmutation histories from single-cell
mutation profiles consists of three parts: themutation tree
T, the sample attachment vector σ , and the error rates of
the sequencing experiment θ . The resulting search space
has a continuous component for θ and a discrete compo-
nent of size (n+1)(n−1)(n+1)m for (T , σ ), which prohibits
an exhaustive search. Instead, with Eqs. 3 and 4 we built

SCITE, a MCMC scheme to sample from the joint pos-
terior given the data. From the current state (T , σ , θ), we
propose a new state (T ′, σ ′, θ ′) with an ergodic mixture of
moves where we change one component at a time. With
properly defined transition probabilities and acceptance
ratio, our chain converges to the posterior. In practice, we
marginalize out the sample attachments in our model not
only to speed up convergence but to focus on the muta-
tion tree T as the informative part for understanding the
mutation history. Thus,

P(T , θ |D) =
∑
σ

P(T , σ , θ |D). (5)

We then only need to consider moves in the joint (T , θ)

space, thereby reducing the search space by a factor of
(n + 1)m. It is still possible to augment the tree with
the samples in a post-processing step by sampling them
conditionally on the tree.
After convergence, the MCMC chain can be used to

sample trees and error rates proportionally to the joint
posterior distribution in Eq. 4. In addition, it is possible to
obtain a single best fitting combination of mutation tree
and error rates via point estimates of the model parame-
ters. One way of doing this is via maximum a posteriori
(MAP) estimates:

(T , θ)MAP = argmax
(T ,θ)

P(T , θ |D). (6)

Another possibility is to use ML estimates. Since the
likelihood depends on the full set of model parameters
(T , σ , θ), it is more natural to optimize them all jointly
rather than marginalizing out the sample attachment:

(T , σ , θ)ML = arg max
(T ,σ ,θ)

P(D|T , σ , θ). (7)

In the ML framework, SCITE includes a parameter γ that
amplifies the likelihood and which can speed up discovery
of the ML tree.
Finally, SCITE provides an option to skip the learning of

error rates when fixed error rates are provided. Since these
are often available for sequencing data, they can be used
instead to reduce the search space size.

Reconstructing mutation histories from real tumor data
For a first evaluation of SCITE, we applied it to three real
single-cell tumor data sets of different data quality.

JAK2-negativemyeloproliferative neoplasm
The first tumor data is single-cell exome sequencing
data from a JAK2-negative myeloproliferative neoplasm
(essential thrombocythemia) [30]. It originally consists of
712 SNVs detected in the exomes of 58 tumor cells. In our
evaluation, we focus on the 18 mutation sites selected as
cancer-related by [30]. The error rates of the sequencing
were estimated as α = 6.04 × 10−6 (false positives) and
β = 0.4309 (false negatives, allelic dropout). In addition,
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the reduced set has 45 %missing data points (compared to
58 % in the full data set). The mutation matrix (Additional
file 1: Figure S1a) is taken from [34]. It distinguishes three
observed states: normal, heterozygous, and homozygous
mutation. This means only that a homozygous mutation
is observed, not that it is actually present in the data. The
latter would contradict the infinite sites model that each
site mutates at most once. Explanations consistent with
infinite sites are that we either have a false negative for the
normal copy of a heterozygous site, or less likely, a com-
bination of a false positive and an allelic dropout for a site
whose true state is homozygous normal. Another explana-
tion for observing a homozygous mutation could be a loss
of heterozygosity. We adapted our approach to integrate
the third mutation state by using the same error probabil-
ities as [34]. They assume that an allelic dropout is equally
likely to cause a heterozygous mutation to be recorded
as a normal state or as homozygous. Denoting heterozy-
gous sites by 1 and homozygous sites by 2, this assumption
results in the error probabilities:

P(Dij = 0|Eij = 0) = 1 − α − αβ

2
, P(Dij = 0|Eij = 1) = β

2
,

P(Dij = 1|Eij = 0) = α, P(Dij = 1|Eij = 1) = 1 − β ,

P(Dij = 2|Eij = 0) = αβ

2
, P(Dij = 2|Eij = 1) = β

2
.

(8)

Mutation tree reconstruction We computed the ML
tree for the 18 mutation sites with SCITE. When optimiz-
ing tree and sample attachment, we obtain a mostly linear
mutation tree with a single branching in the lower part of
the tree (Additional file 1: Figure S2a) with a ML log score
of −378.4.
We observe that quite a few samples are placed at nodes

high up in the tree (Additional file 1: Figure S3), though
many of these placements are uncertain, as indicated by
the multiple co-optimal attachments. Taking into account
the uncertainties due to the high error rates and the large
number of missing values (45 %), it is not unexpected that
many cells fit equally well to several neighboring nodes.
The linear nature of the tree matches a sequential mon-
oclonal development. The subclone expansion starting
towards the bottom of the tree indicates the co-existence
of multiple subclones at the point of sampling. However,
from the single time point data, it is not possible to decide
whether the more recent subclones are on the verge of
replacing the more ancestral clones, or will coexist for
longer.
Along with finding the ML tree with attachments, we

performed a fully Bayesian sampling of trees and attach-
ments from the posterior. To summarize such a sample,
we consider as an example the number of branches the
trees possess. The distribution for the data from [30]

(Fig. 2a) shows that the trees mostly have a single branch-
ing point (with two branches) like the ML tree and often
occur as a simple linear chain with a single branch.

Comparison to trees foundwith other approaches The
same data have previously been analyzed with two com-
peting methods [33, 34].
Kim and Simon [34] employ the same underlying likeli-

hood with errors as in Eq. 8 but they use the data to learn
ancestral relations between each pair of mutation nodes
instead of the whole tree at once. They also use the data to
learn a parameter representing how quickly the mutation
tree branches. This parameter is then used to calculate the
prior probability of ancestral relations, which is fed into
their pairwise test and subsequent tree reconstruction.
With the data from [30] (on the same 18 selected muta-

tions), [34] estimate that 92 % of the evolutionary time
of the phylogenetic tree should be before the first binary
split. In their model, this translates into expecting over
80 % of the mutations to occur before any branching in
the mutation tree. Despite this very linear tree estimate,
their algorithm to turn the pairwise ancestral relations
into a mutation tree leads to the very branched tree in
Additional file 1: Figure S2c, which has a much lower log-
likelihood of −1059.7 than the ML tree found with SCITE
(with a log-likelihood of −378.4). This may be due to the
use of the minimum spanning tree algorithm by Kim and
Simon. The method effectively needs to turn ancestral
relations into strict parent–child relations and thereby, it
essentially discounts the deeper history embedded in their
pairwise tests.
We cannot compare directly to the tree found by Bit-

Phylogeny [33] since their algorithm aims to find the
phylogenetic connection between the samples themselves
rather than the mutation tree. Furthermore, the algorithm
groups samples into clones according to the data and a
stick-breaking prior. For example, using all the mutation
data from [30], as well as a bulk normal and bulk can-
cer sequence, and with a particular stick-breaking tree
prior they find one large clone accounting for over half
the samples and eight further smaller clones arranged in
a tree structure [33]. However, we can view their result
as a mutation tree with attachments where the muta-
tions themselves have been censored. This leaves just the
sample attachment information as well as the global tree
structure between their groupings.
To build a complete mutation tree we allow each muta-

tion to be placed before any one of the clonal groupings
of samples (or completely afterwards). For each muta-
tion, we find its ML position and hence find the ML tree
(with attachments), which respects the result of [33]. The
resulting tree (Additional file 1: Figure S2b) is a mostly
linear chain like the ML tree SCITE finds and involves
some of the same genes at the branches although one
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Fig. 2 The posterior tree branch and error distributions. The posterior distribution for the number of tree branches for the data from [30] in (a), for
the data from [35] in (c), and for the data from [36] in (e), all with fixed false negative error rate β . The prior distributions from uniformly sampled
trees are in light purple. The posterior distributions for β for the same data sets are given in (b), (d), and (f) with the priors included as light purple
lines. When β is learned, the posterior distribution of the number of tree branches shifts slightly as indicated by the black crosses in (a), (c), and (e). SD
standard deviation

of our branches is lost. The log-likelihood of −642.3 for
this tree is substantially better than the tree of [34] but
worse than the tree SCITE finds (with a log-likelihood
of −378.4). With single-cell sequencing we can, as we do
here, simply treat each cell as its own clone and discover
the phylogeny directly. BitPhylogeny [33] instead focuses
on clustering samples into subclones during tree inference
thereby reducing the resolution of the reconstruction.

Error rate learning Within our Bayesian MCMC
approach, we can also sample error rates from the pos-
terior. Focusing on the false negative error rate β while
keeping the false positive α fixed, for the beta prior on β

with mean 0.4309, we chose a large standard deviation
of 0.1. In the MCMC chain, with probability 10 % a
new β ′ is proposed following a Gaussian random walk
with standard deviation equal to one third of the prior’s.
Running the chain for 10 million steps, throwing away
the first quarter, and plotting the resulting posterior of
β we arrive at Fig. 2b. The posterior mean is 0.455 with
standard deviation 0.027 so that the data indicates that
the measured value of 0.4309 is a little underestimated
but well within tolerances.
More interesting for our purposes is how these error

rates affect the tree inference. The MAP β is 0.455

while the MAP tree (with attachments marginalized out)
is a simple chain (Additional file 1: Figure S4). The
mutation order is similar to the ML tree (Additional
file 1: Figure S2a) up to the branching point sug-
gesting a monoclonal tumor development. Keeping the
error rate fixed at 0.4309 instead, we find an iden-
tical MAP tree giving us confidence that the infer-
ence is robust against minor differences in the error
rates.

Mutation tree inference for a larger set of mutations
We also considered a larger set of mutations compris-
ing all 78 non-synonymous mutations from the full data
set. For this number of mutations, with only 58 sampled
cells and high levels of missing data (48 %), the poste-
rior is rather flat making discovering a global optimum
rather than a local optimummore difficult. Increasing the
parameter γ to 2–3 to amplify the likelihood landscape
helped in discovering high-scoring trees. We also tested
that the alternative tree representation (see “Methods”)
designed for instances with more mutations than sam-
ples aided in finding the ML tree (Additional file 1:
Figure S5). The ML tree is again highly linear but the
order especially of some of the 18 mutations varies com-
pared to the ML tree inferred for that subset of the data
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(Additional file 1: Figure S3).Withmissing data, the muta-
tions may fit equally well along several edges and they
were placed in their earliest position, which may explain
some of the variation.More generally though, the high lev-
els of missing data allow mutations and samples to move
without affecting the likelihood while high error rates
allow further rearrangements with only a small effect. For
example, the mutation in the gene PDE4DIP that changes
most between the two data sets has 59 % missing data.
Also the order is essentially determined by the smaller
number of samples that attach higher up the trees. This
smaller number is effectively reduced further by the miss-
ing data, limiting the accuracy of any tree reconstruction,
as explored later with the simulations.

Clear-cell renal-cell carcinoma
The second data set is from single-cell exome sequencing
data of a clear-cell renal-cell carcinoma [35]. The muta-
tion statuses of 50 sites in 17 tumor cells are detailed in the
supplementary material of [35]. We marked the presence
of an SNV when the call was different from the consensus
of five normal tissue cells (in line with the totals provided
in their supplementary material). As for the data from
[30, 35] distinguish between heterozygous and homozy-
gous mutations so we again use Eq. 8. Of the 50 sites, only
35 were not mutated in at least one cell. Only those were
selected since the remaining 15 would simply be placed
at the top of the mutation tree. The error rates were esti-
mated by [35] as α = 2.67 × 10−5 (false positives) and
β = 0.1643 (false negatives) and the data also has 22 %
missing entries (Additional file 1: Figure S1b).

Mutation tree reconstruction The ML and MAP trees
both possess a completely linear accumulation of muta-
tions (Additional file 1: Figures S6 and S7a), which is
consistent with a series of monoclonal expansions and the
conclusions of [35]. The linearity is confirmed in the full
posterior distribution of trees with a linear chain being
dominant (Fig. 2c). In addition, we observe that almost
all of the samples are placed towards the end of the tree.
Again a larger value of the parameter γ and the alternative
tree representation sped up discovery of ML trees.

Error rate learning Fixing a beta prior for β with mean
0.1643 and standard deviation of 0.06 the posterior dis-
tribution of β was obtained by averaging over ten runs
of 10 million steps (with a quarter as burn-in) (Fig. 2d).
The posterior mean is a little larger at 0.207 with a stan-
dard deviation of 0.019 so the stated value is just within
the uncertainties. The MAP value of β instead is a lit-
tle closer at 0.198 while the MAP tree (Additional file 1:
Figure S7b) is essentially identical to that with a fixed value
of β = 0.1643 (Additional file 1: Figure S7a). The order of

some of the higher mutations varies, however, since their
exact placement hardly affects the posterior probability.

Estrogen-receptor positive (ER+) breast cancer
The third data set is from single-nucleus exome sequenc-
ing of 47 tumor cells from an estrogen-receptor positive
(ER+) breast cancer [36]. Only two states are called for
each site: the presence or absence of a SNV. Estimated
error rates from [36] are 9.72 % for allelic dropout, and
1.24 × 10−6 for false discovery. In our analysis, we use
the 40 mutations present in at least two tumor cells
(Additional file 1: Figure S1c).

Mutation tree reconstruction The MAP tree computed
for this data set is shown in Fig. 3. In the Supplement, we
additionally show theML tree (Additional file 1: Figure S8)
and a version of the MAP tree with attached samples
(Additional file 1: Figure S9a). In both the MAP and the
ML trees, we observe a linear accumulation of muta-
tions in the early stages of the tumor, suggesting that
the development was through a sequential replacement of
subclones with no surviving side branches and only a few
cells with ancestral states surviving until present. In the
later stages of the tumor, we observe a complex branch-
ing into co-existing subclones. This branching is exhibited
more generally in the full posterior distribution of trees as
summarized in Fig. 2e.
From the single time point data available for this tumor,

it cannot be inferred whether there will be a long-term
coexistence of subclones, or if we observe a transient state
that will eventually lead to a single surviving subclone. For
initial cancer treatment, however, the status quo, what-
ever mutations co-occur in cells, is already informative
for jointly targeting the present subclones and therefore,
minimizing the risk of further differentiation into therapy-
resistant subclones.

Error rate learning Using a beta prior for β with mean
0.0972 and standard deviation of 0.04, we averaged over
20 runs of 10 million steps (with a quarter as burn-in) to
obtain the posterior distribution of β (Fig. 2f). The poste-
rior mean is more than double at 0.228 (with a standard
deviation of 0.015), which disagrees with the stated value.
This result is in contrast to our later simulations on learn-
ing the error rate (Fig. 4) that show that the MAP value is
close to the true one. A possible explanation for the dis-
crepancy is that allelic dropout only comprises one part
of the false negative rate. Other contributing factors could
include inaccuracies in calling heterozygous mutations at
low coverage.
The MAP value of β is 0.226 with a MAP tree

(Additional file 1: Figure S9b), which shares many feature
with the MAP tree at fixed β = 0.0972 (Additional file 1:
Figure S9a) but has some rearrangements of the branches
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Fig. 3MAP tree for the (ER+) breast cancer for the [36] data. See Additional file 1: Figure S9a for a version with samples attached. Yellow genes
indicate non-synonymous mutations in known cancer genes [36]

lower down and some reordering of the mutations higher
up. Learning the error rate also leads to slightly fewer
branches in the posterior distribution, as indicated by the
black crosses in Fig. 2e.

Systematic evaluation of SCITE on simulated data
With the limited availability of single-cell sequencing data
at this point and the lack of the ground truth in real data,
we performed a more systematic evaluation of SCITE on
simulated data sets. Our analysis focuses on the accuracy
of tree inference and error rate learning, the effect of data
quality, and the practical run times of SCITE.

Accuracy of tree inference
To check the consistency of our approach, we simu-
lated random mutation trees with attachments uniformly,
which allows for poly-clonal tree topologies. First, for
n = 20 and α = 10−5, we generated 100 such trees
with up to 100 attachments. For error rates 100β ∈
{5, 15, 25}, for each tree we sampled from a lognormal
with standard deviation 0.1 and multiplied it by β to
obtain β∗. Then we added noise to the perfect data
with rates (α,β∗) and removed 1 % of the data. Tak-
ing subsets of the data of size m, we learned the ML
and MAP trees for the error rates β . This gives us
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Fig. 4 Learning error rates. Comparison of the MAP false negative rate
β learned using SCITE for n = 20 against the β used to generate the
data. The solid blocks are one and two standard deviations of inferring
β if the tree was known.MAPmaximum a posteriori probability

a random misspecification of around 10 % compared
to β∗.
We quantified the difference between the inferred trees

and the true tree by counting how often a node has the
wrong parent (Fig. 5 and the top row of Additional file 1:
Figure S10). In the ML setting, if no samples are attached
to a chain of mutations, then any ordering of those muta-
tions has the same likelihood. Here, in the score we do

not penalize this non-identifiability and take the order-
ing that minimizes the distance to the generating tree.
The non-identifiability will, however, tend to decrease as
the number of samples m increases. The MAP tree does
select an ordering (roughly following the frequencies) and
hence has higher distances than the ML tree. In general,
MAP inference should be more robust and less prone to
overfitting, but can have a higher bias. To compare the
ML and MAP inference fairly, we chose a random order-
ing of the mutations in non-identifiable regions in the
ML trees and recomputed the distances to the generat-
ing tree. We do observe a marginal improvement in the
tree reconstruction with the MAP tree (Additional file 1:
Figure S11).
The errors, however, are not a result of the infer-

ence method, since SCITE indeed finds the ML tree
(Additional file 1: Figure S12). Instead these errors are
inherent in noisy data where another tree might happen
to fit the data better than the generating tree. The discrep-
ancy can only be resolved by reducing errors or increasing
the sample size and Additional file 1: Figure S10 gives
an indication of how this occurs. To put the errors in
scale, a value of two would refer to adjacent mutations in
a chain being swapped. Since samples contain the muta-
tions along their entire history in the mutation tree, we
have a greater consensus about the mutation structure
higher up the tree than lower down. The exact placement
of mutations near the bottom of the tree may be deter-
mined by only a couple of samples so that the errors we
typically see with larger m are mutations near the bottom
of the tree being shifted, or two adjacent mutations being
swapped. With this in mind, we obtain very good trees
with about 60 samples, depending on the error rate.

Fig. 5 Comparison of different methods. Comparison of the tree learning for n = 20 using SCITE for the ML tree (dashed) and MAP tree (dotted)
against results from [34] (solid lines). The ML tree distances do not include non-identifiable regions. K&S Kim and Simon [34],MAPmaximum a
posteriori,MLmaximum likelihood
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We repeated the simulations for n = 40 and up to
200 attachments as depicted along the bottom row of
Additional file 1: Figure S10 and again find good recon-
struction when we have several samples per mutation.

Learning the error rates
Since SCITE can also perform fully Bayesian tree infer-
ence, we examined its ability to infer the false negative rate
from data. For 2000 random trees with 60 attachments, we
generated data with a range of β from 5 to 25 %, α = 10−5,
and 1 %missing data. We further fixed a uniform prior for
learning β so that no information is passed to SCITE apart
from the noisy and incomplete mutation matrix.
There is very high correlation between the generating β

and the MAP value learned (Fig. 4). To put this in context,
we consider the theoretical distribution if the tree was
known. From the random trees and attachments, around
22 % of the entries in the perfect mutationmatrix are ones.
They are randomly changed with the rate β , leading to a
binomial distribution and a standard deviation of√

100β(1 − β)

22mn

when inferring β from the result. One and two standard
deviation intervals are included in Fig. 4, showing again
that SCITE performs very well as it must also infer the tree
structure and handle the missing data.
Similar plots for m = 40 and m = 80 (Additional file 1:

Figure S13) show also a tightening of the β inference asm
increases.

The effect of missing data
High rates ofmissing data points due to unobservedmuta-
tion states are typical for present-day single-cell sequenc-
ing data. We performed simulation experiments to test
how this feature affects the accuracy of mutation tree
reconstruction. With an error rate of β = 10 % and
the same misspecification as before, we generated up to
400 random trees with up to 80 attachments. Keeping
α = 10−5, we varied the amount of missing data from
1 to 20 % to see the effect on the tree reconstruction for
m = {40, 60, 80}. We see a very weak increase in recon-
struction errors as themissing data rate increases (top row
of Additional file 1: Figure S14). Since SCITE treats the
inference probabilistically, missing data is akin to effec-
tively reducing the number of samples m, so the behavior
in Additional file 1: Figure S14 is in line with changing m
slightly in Additional file 1: Figure S10. The behavior also
shows that SCITE is robust even against high missing data
rates.
Looking back to the even higher missing data rates in

the earliest data sets, we simulated up to 60 % missing
data with 400 trees and the same settings as before. The
reconstruction progressively gets worse with increasing

missing data (bottom row of Additional file 1: Figure S14).
At around 30–40 % missing data with 80 attachments, we
have similar performance as for 40 cells attached with no
missing data, and so have effectively halved our sample
size. With 60 %missing data, the reconstruction is notably
poorer again, although SCITE does find about half the
parents correctly for the MAP solution and a large major-
ity with the ML approach. This difference is because the
optimal order is chosen for the ML solutions in case of
non-identifiability.

Doublet samples
Rarely, instead of isolating a single cell for sequencing, a
pair of cells is captured instead. We checked how robust
SCITE is to these sorts of perturbations by again simulat-
ing data from 400 random trees with 20 nodes and up to
100 attachments. To represent the sequences of doublet
samples, we took up to 20 pairs of attached samples and
combined them by recording a mutation whenever it was
present in either of the original single cells. Errors were
added with a rate of β = 10 % (misspecified as previ-
ously), α = 10−5, and 1 % missing data. We ran SCITE
with m = {40, 60, 80} total samples, including up to 20
doublets, to see their effect on the tree reconstruction.
We observe a linear increase in reconstruction errors

as the number of doublets increases (Additional file 1:
Figure S15) with decreasing gradient as m increases since
then the doublets represent a smaller proportion of the
total sample. Unlikemissing data, which reduces the effec-
tive sample size, doublets add confounding mutations,
which could disagree with the tree topology. However,
since SCITE employs probabilistic inference, and at the
level of the mutation tree rather than the sample tree,
the consensus of the single-cell samples moderates the
negative effects of the doublets. Even at high rates of dou-
blet sampling, like 10 or 20 %, the tree reconstruction,
therefore, performs well.

Run times
To uncover the complexity of the stochastic search and
MCMC scheme, we simulated data from 400 uniformly
sampled trees with up to 100 nodes and 400 attached sam-
ples. We set α = 10−5 and β = 0.1 (with the same
misspecification as before), included 1 % missing data and
set the parameter γ = 1 as for the MCMC case. For each
tree, we ran SCITE 100 times and recorded how many
steps the algorithm took to first hit the highest likelihood
tree uncovered by that run, as well as the time of the run.
The lengths of the chains were chosen so that nearly all
of the runs would share the same highest likelihood. The
average number of steps needed to first find the consen-
sus ML tree can then be calculated (for those runs with a
lower likelihood, we add the length of the chain and then
assumed they would find the ML tree in an additional
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average number of steps). This can then be multiplied by
the average time per step to give a measure of how long
SCITE takes to find a ML tree on average, and repeated
for all 400 trees to provide Fig. 6.
On the theoretical side, arguments analogous to those in

[37] indicate that the MCMC chain requires O(n2 ln(n))

steps to converge or find ML trees. The likelihood land-
scape may also depend on n and m in non-trivial ways,
which can further affect the convergence. With each
MCMC step taking O(mn) to score the tree, we get an
overall estimate of O(mn3 ln(n)) for convergence.
Compared to the numerical results in Fig. 6, the gra-

dients in the log–log plots are 4.5, 4.5, and 4.2 for m =
{n, 2n, 4n} respectively. Since m ∼ n in the simulations,
these are a little higher than the power of 4 suggested by
the estimate, but roughly in line with it. To check the lin-
ear scaling with m, we take the fit lines at n = 60 in
the middle of the simulation and we find that doubling
m from n to 2n and then 4n increases the time by a fac-
tor of 1.9 and then 1.95, slightly less than double and
in line with linear scaling. With linear scaling in m, and
for a reasonable number of mutations, SCITE will, there-
fore, be able to handle large numbers of sampled cells
efficiently.
Further parameters with influence on the practical per-

formance of SCITE are the move probabilities and for
ML tree discovery, additionally the parameter γ . We per-
formed a systematic search for the optimal parameters,
which is described in Additional file 1. Our observation
is that an optimal choice of move probabilities gives a
constant factor speed-up compared to default values. Sim-
ilar results were observed for γ , for which the optimum
for finding a ML tree quickly is just below 1, the value
required for the MCMC sampling.

Comparison with competing approaches
To assess further the performance of SCITE, we compared
it to a simple perfect phylogeny approach, two methods

designed for single-cell data, and two recent methods for
tree inference from bulk-sequencing data.

Perfect phylogeny
We first compared SCITE against a simple algorithm
for solving the perfect phylogeny problem (i.e. testing
whether the data defines a phylogeny, and if it does to
construct one [12]). A mutation matrix has a perfect phy-
logeny if a tree can be constructed such that the leaves
are the samples and the mutations are each placed at
exactly one edge, such that for every leaf the mutations
on the path leading to it from the root reflect its mutation
status. Such a tree exists only if there are no contradic-
tions in the data due to noise or recurring mutations. But
if it exists, it can be represented as a mutation tree by
labeling nodes instead of edges. To test for perfect phy-
logeny, we use a version of the data with nomissing values.
From our simulated trees and data, only very few are free
of contradictions, which limits the tree comparison to a
few instances. The perfect phylogenies on average deviate
more from the true tree than bothML andMAP trees and
none is found for instances with more than 45 samples.
The differences between the perfect phylogeny and the
true tree are due to both the errors introduced and insuf-
ficient information to fully reconstruct the tree. Details of
the comparison are given in Additional file 1: Table S1.

The approach of Kim and Simon [34]
The method in [34] reconstructs the same type of muta-
tion trees as our approach. However, in their approach,
a parameter representing how quickly the mutation tree
branches is first learned from the data. This parameter
is then used to calculate the prior probability of ances-
tral relations, which informs a pairwise ordering test and
subsequent tree reconstruction. Instead of learning the
parameter from the data, we give their method the exact
value from the tree that was actually used to generate the
data since this simplifies running the simulation test. Of

Fig. 6 Scaling behavior. The average time taken for SCITE to first find a ML tree as the number of mutations n in the tree is varied along with the
number of attached samplesm = {n, 2n, 4n}
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course, in practice, this piece of information would not
be available so the results from their algorithm are over
optimistic. Nevertheless, the pairwise approximation per-
forms comparatively poorly (Fig. 5). In particular, there is
little improvement as the number of samples increases.
Although the pairwise ancestral tests will become more
accurate, this additional information appears to have little
impact on the conversion to a mutation tree.

Comparisonwith BitPhylogeny
More advanced probabilistic inference is provided by Bit-
Phylogeny [33]. This method, however, reconstructs a
hierarchical subclone structure rather than a mutation
tree thereby precluding a direct comparison to SCITE and
the approach of [34]. Therefore, we convert the outcome
of each method into a complete mutation tree with sam-
ples attached. For SCITE, this means finding the ML tree
with attachments. For the approach of [34], we place the
samples at their best fitting position on the tree found.
For BitPhylogeny instead, we place the mutations along
the branches of their clonal tree in the position that max-
imizes the likelihood. Since the mutations and samples
may be grouped together, as a measure of fit we use the
consensus node-based shortest path distance (as defined
in [33]) between the (completed) inferred tree and the
generating tree. In particular, for each tree, the pairwise
shortest distance between any two samples is their num-
ber of differing mutations. We then normalize by aver-
aging over the absolute differences between the pairwise
distances in the inferred and generating trees, rather than
taking the sum.
For n = 20, α = 10−5, and β = 0.1 (with the

same misspecification as before), we generated 400 such
trees with 1 % missing data. For simplicity and giving
BitPhylogeny a slight advantage, we passed it the com-
plete data. The results for m ∈ {40, 60, 80} are presented
in Fig. 7. The methods compared perform significantly

more poorly than SCITE, with BitPhylogeny [33] perform-
ing better than the algorithm of [34], but with neither
approaching the performance of SCITE.
We can also compare the performance of the differ-

ent methods in terms of the difference in log-likelihoods
between the inferred and generating trees, normalized
by dividing by the number of data matrix elements
(Additional file 1: Figure S12). This shows similar behav-
ior to Fig. 7 and we observe that SCITE always provides
a non-negative difference. SCITE, therefore, always found
either the generating tree or one with a slightly higher
likelihood than the generating tree.

Comparisonwith bulk-sequencingmethods
Finally, we compared SCITE to methods designed for
deconvolution and tree reconstruction from mixed bulk
sequences. We chose PhyloWGS [24] and AncesTree [22]
as two recent high-performing methods that allow sam-
ples to be treated separately as well as combined. Phy-
loWGS employs a stick-breaking tree prior (like BitPhy-
logeny) while AncesTree solves the deconvolution and
ancestry as a matrix factorization. When passing the sim-
ulated single-cell mutations as individual samples to both
methods, neither returned anything other than a single
grouping of mutations. A possible explanation for this
result is that the two methods interpret the binary muta-
tion states as cellular prevalence in mixed samples, which
likely causes trouble in the deconvolution step. Better per-
formance was obtained when combining the single cells
into a bulk mixture, with both methods returning muta-
tion trees with the mutations possibly grouped together at
the nodes. To compare with the other methods, we again
placed the samples at their best positions in the inferred
trees to obtain the results in Fig. 7. AncesTree performs
slightly worse than PhyloWGS and both are notably worse
than BitPhylogeny and SCITE. This is not unexpected,
as only the latter two are designed to handle single-cell

Fig. 7 Comparison of additional methods. Comparison of the tree inference of SCITE, the algorithm of [34], BitPhylogeny [33], PhyloWGS [24], and
AncesTree [22]. The quantity �d is the normalized consensus node-based shortest path distance (as defined in [33]) between the inferred and
generating trees. AT AncesTree, BP BitPhylogeny, KS Kim and Simon [34], PW PhyloWGS
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data. The main conclusion here is that specialized meth-
ods are necessary for single-cell data as approaches for
mixed samples are not readily applicable.

Conclusions
Single-cell sequencing data is giving unprecedented
insights into intra-tumor heterogeneity, a major obsta-
cle to permanent remission in cancer treatment. In this
paper, we introduced SCITE, a likelihood-based recon-
struction of tumor genealogies from noisy and incomplete
mutation profiles of single cells. The approach provides a
flexible MCMC sampling scheme that allows us to either
find the best fitting tree or sample from the posterior dis-
tribution, and it can be combined with learning the error
rates of the sequencing experiments. We have shown that
the probability model underlying SCITE is highly adapt-
able. It performs well in the presence of various types of
noise, including types that were not explicitly modeled,
such as doublet samples (the inadvertent sequencing of
two instead of a single cell). The model also lends itself
to some straightforward extensions, such as the incorpo-
ration of position-specific error rates, or the introduction
of further mutation and error types that would maintain
the independence of genome positions. Besides its flexi-
bility, the key advantage of SCITE is its linear scaling with
the number of samples. While this feature is negligible for
present data sets, it will become essential as soon as hun-
dreds or even thousands of cells of a tumor are routinely
sequenced.
Using SCITE, we reconstructed the monoclonal origin

of an ET tumor and a clear-cell renal-cell carcinoma, as
well as a complex subclonal structure in an ER+ breast
cancer. The consistency of SCITE is shown in simulation
studies, which we also used to estimate the number of cells
necessary to obtain reliable tree reconstructions, a piece
of information that could be useful in the design of future
sequencing experiments.
SCITE differs from earlier approaches, in particular Bit-

Phylogeny [33], in its use of single cells as taxonomic units,
giving it the highest possible resolution in the tree recon-
struction. Because each cell provides information about
all the mutations, and all this detail is used, this approach
allows a more robust reconstruction of the mutation tree.
This in turn aids the identification of driver mutations.
The placement of the individual cells is, however, less
certain. Clustering cells into clones instead, as done in
BitPhylogeny [33], and placing these as the taxa means
we can use the consensus of single-cell information in
each clone to deduce more robustly the ancestral relation-
ships between the clones themselves, but at the expense of
reduced accuracy in the reconstruction of the mutational
history.
Further improvements in tree reconstruction could be

achieved by considering copy number alterations along

with point mutations. For one, copy number information
could be used to understand point mutations states bet-
ter, e.g. a seemingly homozygous mutation may in fact
be loss of heterozygosity, but more importantly it can be
used as a feature in tree reconstruction itself, as has been
done previously for bulk-sequencing data [24]. The main
challenges here will be that for large-scale copy number
events, the independence of mutation sites is no longer
given, and that the infinite sites assumption would no
longer hold.
The knowledge of individual mutation histories is a

promising source of information for personalized can-
cer treatment. Once single-cell sequencing has become
more prevalent, the unprecedented resolution of muta-
tion histories reconstructed from single cells will likely
be valuable in many more respects. One direction is the
identification of recurrent mutation patterns by compar-
ing high-resolution mutation trees from patients with the
same and/or different tumor types. Another direction
could be to combine single-cell data from different time
points and different locations in the tumor to obtain a bet-
ter understanding of the temporal and spatial organization
of subclonal populations of tumor cells, again at a higher
resolution than would be possible with bulk-sequencing
data. When sampling cells from the primary tumor and
metastasis, the attachment point of metastatic cells to the
mutation tree could help to answer the open question of
whether subclones with the potential to metastasize arise
early or late in tumor development.

Methods
Mutation trees
In SCITE, we represent a rooted mutation tree T over n
mutations as an augmented ancestor matrix A(T) where
every node is considered an ancestor of itself:

Aik =
{
1, if i = k or i is an ancestor of k,
0, elsewise. (9)

For example, the augmented ancestor matrix for the tree
in Fig. 1d, reduced to the mutation matrix given in 1 is

A =
⎛
⎝
M1 M2 M3 R

M1 1 0 0 0
M2 0 1 1 0
M3 0 0 1 0

⎞
⎠, (10)

where R represents the root of the mutation tree. The cells
are attached to T such that the path to the root spells out
their mutation status. This placement is denoted by a vec-
tor σ , which records at the jth position the attachment
point of sample j. Carrying on the example from Eq. 1 and
Fig. 1d, we have σ = (1, 1, 1, 4, 3, 3, 2) where 4 represents
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the root. The connection between the mutation matrix
and the mutation tree is

(Eij|T , σ ) = A(T)iσ j . (11)

This simply means that for a given tree and sample attach-
ment, the mutation status of a sample is identical to the
one observed in the node where the sample attaches to the
tree. Therefore, the likelihood in Eq. 3 can be rewritten as

P(D|T , σ , θ) =
n∏

i=1

m∏
j=1

P(Dij|A(T)iσ j) (12)

and thereby computed directly from T and σ .

MCMC sampling
In principle, the MCMC of SCITE needs three types of
moves to separately alter the tree T, the attachment vector
σ , and the error rates. In fact, it is possible to marginalize
out the σ component, such that we only need to con-
sider moves in the joint (T , θ) space. We first focus on the
marginalization and then describe the remaining move
types.

Marginalization of the sample attachment
A move where we pick a sample and a new parent for
it uniformly would satisfy the necessary properties for
the MCMC chain on σ to converge, but we can achieve
convergence much faster. This is because the likelihood
in Eq. 12 factorizes into a product for each sample to
be attached. As long as the prior P(σ |T , θ) can also be
factorized (so that the attachment for each sample is inde-
pendent of the others), we can include the priors as in
Eq. 4 and efficiently sum Eq. 12 over σ to marginalize it
out:

P(T , θ |D)

P(T , θ)
∝

∑
σ

m∏
j=1

[ n∏
i=1

P(Dij|A(T)iσ j)

]
P(σ j|T , θ)

(13)

=
m∏
j=1

n+1∑
σ j=1

[ n∏
i=1

P(Dij|A(T)iσ j)

]
P(σ j|T , θ).

Computation of Eq. 13 is in O(mn) time due to the tree
structure underlying A(T). Along with efficient computa-
tion of Eq. 13, we now need only search over the (n + 1)m
times smaller space of trees T and error rates θ leading
to much faster MCMC convergence. This marginalization
is equivalent to grouping all attachments to the same tree
into a single object, which is responsible for the similarly
large speed-up for sampling Bayesian networks in order
MCMC [38] and more recently partition MCMC [39].
Analogously, nested effect models average over all effects
with uniform prior [40].
With the attachments marginalized out, we need to con-

sider only moves in the joint (T , θ) space. We can change

one component at a time to propose a new pair (T ′, θ ′)
with transition probabilities q(T ′, θ ′|T , θ) and accepting
moves with the ratio

ρ = min
{
1,

q(T , θ |T ′, θ ′)P(T ′, θ ′|D)

q(T ′, θ ′|T , θ)P(T , θ |D)

}
(14)

to sample proportionally to P(T , θ |D). Once we have
sampled a tree, we can easily sample each attachment
independently following Eq. 13.

Treemoves
Akin to standard MCMC approaches on graphical struc-
tures [41], we build a scheme on rooted mutation trees for
fixed errors θ as follows. Given the current tree T, we find
the neighborhood of all trees reachable with the MCMC
move from T. One then samples a tree T ′ from this neigh-
borhood with some proposal probability q(T ′, θ |T , θ) and
accepts the move with the probability in Eq. 14.
As long as the moves satisfy reversibility (that is, if the

move from T to T ′ can be proposed with a non-zero
probability, the reverse move from T ′ to T also has non-
zero probability to be proposed), irreducibility (that is, a
sequence of moves exists that leads from any tree to any
other), and aperiodicity (which can be ensured by includ-
ing the tree T in its neighborhood or adding a non-zero
probability not to move), once the chain converges this
scheme would allow us to sample trees proportionally to
P(T , θ |D).
The basic MCMC move we use is prune and reattach.

We sample a node i uniformly from the n available and
cut the edge leading to this node to remove the subtree
from the tree. Then we sample one of the remaining nodes
(including the root) uniformly and attach the subtree there
instead. An example is illustrated in Fig. 8.
The reverse move, where we again sample i first but

then pick its old parent, has the same proposal probabil-
ity q(T , θ |T ′, θ) = q(T ′, θ |T , θ) since the non-descendant
set has the same size each time i is removed. This term
then drops from Eq. 14 and need not be calculated. Since
we can also choose the old parent when sampling a new
one, this move has a non-zero probability of proposing the
same tree T, ensuring aperiodicity. There is also a path
from any tree to a tree with all nodes attached to the
root, by moving each node to the root step by step. Via
reversibility, we can likewise move from there to any other
tree ensuring irreducibility. The prune and reattachmove,
therefore, suffices to sample trees according to their pos-
terior. To speed up the convergence of the chain, we use
two additional moves in our MCMC scheme: swap nodes
to swap the labels of two nodes and swap subtrees to swap
two subtrees. (See Additional file 1 for more details.) One
of the three moves is picked at each step of the chain with
a fixed probability.
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Fig. 8 Prune and reattach MCMCmove. a From our starting tree T, we first select a node uniformly, hereM5, and detach it from the rest of the tree. b
Then we sample one of the remaining nodes in the rooted tree; hereM2 is chosen. c Finally, we attach the detached subtree formed ofM5 and its
descendants to the newly selected nodeM2

Error learning
Where estimates of the error rates are known, we can
input this information into the prior P(θ). Since θ is
between 0 and 1, we choose a beta prior with mean equal
to the known estimates and a large standard deviation
to be weakly informative. Although for a given (T , σ ) we
can marginalize out θ analytically, this interferes with the
speed-up in Eq. 13. Instead, to move in the error space, we
choose a simple Gaussian random walk with fixed stan-
dard deviations in each direction and centered on the
current value θ .

Maximum likelihood tree
Along with utilizing our MCMC scheme to perform fully
Bayesian tree inference, we can adapt the method to
search for the ML tree as well. In the ML framework, we
consider the full space of trees with attachments (T , σ )

and find the best scoring pair, rather than summing over
the attachment points. Keeping the error rates θ fixed for
simplicity, when we wish to search for the ML tree with
attachments, after maximizing over all possible place-
ments, we can define the following score for each tree:

S(T) = P(D|T , σ ∗) , σ ∗ = argmax
σ

P(D|T , σ ).

(15)

Since the likelihood in Eq. 12 factorizes, we can find the
best attachment for each sample independently of the
others,

σ ∗
j = argmax

k

n∏
i=1

P(Dij|A(T)ik), (16)

by running over the columns of A(T) and comparing to
the observed data with the error rates as in Eq. 2. If sev-

eral placements provide the same maximum, any may be
selected for calculating S(T), which is then

S(T) = max
σ

P(D|T , σ ) (17)

and which again involves only O(mn) simple operations.
Now we can turn our attention to finding the ML tree:

T∗ = argmax
T

S(T), (18)

which because of Eq. 17 is the tree thatmaximizes the like-
lihood in Eq. 12. The number of rooted trees with (n + 1)
nodes (including the root) grows factorially so an exhaus-
tive search becomes infeasible for more than ten nodes or
so.
Instead we can reuse our MCMC scheme on the space

of rooted mutation trees where given the current tree T
we propose a tree T ′ according to one of the three move
types with the same proposal probability q(T ′|T) but now
accept the move with probability

ρ = min
{
1,

q(T |T ′)S(T ′)γ

q(T ′|T)S(T)γ

}
. (19)

The power of γ here is a way to flatten the distribution
(for γ < 1) or make it more pronounced (for γ > 1). Sim-
ulated annealing would involve running the chain while
simultaneously increasing γ → ∞ to end up in a local
maximum. Here, instead, we chose a value (depending on
the data) for this parameter that allows fast discovery of
the maximally scoring tree and simply run many chains,
recording the maximally scoring tree we encounter.
In the Bayesian framework, we can search for the MAP

tree. Including the prior on all discrete components and
updating S(T) accordingly, we would find the joint MAP
tree and attachments with the scheme here. Averaging out
the attachments instead, we can search just for the MAP
tree as well. In particular, we replace S(T) by P(T , θ |D) in
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Eq. 19. We can also find jointly maximal trees and error
rates by putting the error moves back in.

Alternative representation for ML discovery
For theML tree with attachments, since the optimal place-
ment for each attachment can be easily found, we are left
to search over all rooted trees with (n+1) nodes. However,
when m � n, we may return to the binary genealogical
tree (Fig. 1b) with m sampled cells as leaves and (m − 1)
internal binary divides. The mutations are placed along
the edges and they are present in all cells further down
that lineage. For a given genealogical tree with leaves, the
optimal placement of every mutation along the edges is
simple to compute. Each tree is assigned a score corre-
sponding to the likelihood of the data given the optimal
placement of the mutations, which can again be calcu-
lated in O(mn) time. The binary tree with the highest
score is then the ML binary genealogical tree that directly
provides the ML mutation tree with attachments when
we change the representation back to mutations trees
(Fig. 1f).
We can search the binary tree space with analogous

moves as for the mutation trees. A prune and reattach
move can be performed by detaching one half of any inter-
nal binary divide (the remaining neighboring edges join
together) and reinserting it into any of the edges then
present. We can also swap leaf labels. The size of the
relevant binary tree space is

m! (m − 1)!
2m−1 ,

which may be smaller than the mutation tree space of
(n+1)(n−1), or easier to search, allowing theML tree to be
discovered more quickly. This alternative representation
is implemented in the SCITE software package.
In the binary tree space, one can further marginalize,

but this is over the mutation placement rather than the
sample attachments and the resulting posterior distribu-
tion does not translate directly into one over the mutation
tree space.

Software availability
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