
RESEARCH Open Access

Comparative transcriptomics reveals the
conserved building blocks involved in
parallel evolution of diverse phenotypic
traits in ants
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Abstract

Background: Reproductive division of labor in eusocial insects is a striking example of a shared genetic background
giving rise to alternative phenotypes, namely queen and worker castes. Queen and worker phenotypes play major
roles in the evolution of eusocial insects. Their behavior, morphology and physiology underpin many ecologically
relevant colony-level traits, which evolved in parallel in multiple species.

Results: Using queen and worker transcriptomic data from 16 ant species we tested the hypothesis that conserved
sets of genes are involved in ant reproductive division of labor. We further hypothesized that such sets of genes should
also be involved in the parallel evolution of other key traits. We applied weighted gene co-expression network analysis,
which clusters co-expressed genes into modules, whose expression levels can be summarized by their ‘eigengenes’.
Eigengenes of most modules were correlated with phenotypic differentiation between queens and workers.
Furthermore, eigengenes of some modules were correlated with repeated evolution of key phenotypes such as
complete worker sterility, the number of queens per colony, and even invasiveness. Finally, connectivity and
expression levels of genes within the co-expressed network were strongly associated with the strength of selection.
Although caste-associated sets of genes evolve faster than non-caste-associated, we found no evidence for queen- or
worker-associated co-expressed genes evolving faster than one another.

Conclusions: These results identify conserved functionally important genomic units that likely serve as building blocks
of phenotypic innovation, and allow the remarkable breadth of parallel evolution seen in ants, and possibly other
eusocial insects as well.

Keywords: Social insects, Caste differentiation, Gene expression, Parallel evolution, Phenotypic plasticity, Gene
co-expression network

Background
Understanding how novel phenotypes arise and are
maintained is a major goal of evolutionary biology [1–3].
Parallel evolution of conserved sets of genes across
related species may lead to parallel appearances of
phenotypes in response to similar selective regimes

[4, 5] (e.g., antibiotic resistance [6], nacre building in
molluscs [7]). Redeployment of pre-existing genes and
pathways permits the parallel evolution of phenotypic
novelty [5, 8–10]. Furthermore, novel phenotypes fre-
quently arise through functional changes in conserved
developmental pathways in closely related species
(e.g., the Wnt signaling pathway [11], wing pigmenta-
tion in butterflies [12, 13]). It is well recognized that
most genes act as members of biological pathways, or
of co-regulated modules [14], yet how gene networks
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evolve and to what extent they play a role in the origin of
phenotypic novelty remain unsolved [15].
Reproductive division of labor in social insects provides

an extreme example of phenotypic plasticity, in which a
single totipotent egg may develop into either a reproduct-
ive queen or a non-reproductive worker [16]. As a result,
eusocial insects decouple behavioral and physiological
traits into these two complementary phenotypes, called
castes. Eusociality is one of the major transitions in evolu-
tion [17], and has arisen independently multiple times in
the order Hymenoptera, comprising wasps, bees, and ants
[18]. Building on the evolution of eusociality, queen–
worker polymorphisms have also evolved independently
in several lineages. To understand the molecular mecha-
nisms underlying social insect polymorphism, previous
studies have primarily examined caste-biased gene expres-
sion patterns in a small number of distantly related
species, typically across separate origins of eusociality
[19–25]. These studies have found a small number of
genes repeatedly associated with reproductive division of
labor, but a comprehensive, comparative characterization
of queen and worker transcriptional architecture has
been lacking.
Evolution of reproductive division of labor in social

insects has interested evolutionary biologists since
Darwin. Sterile workers cannot directly transmit traits
they possess [26, 27], but worker phenotypes respond to
natural selection indirectly, through the action of kin
selection, giving rise to a diverse array of morphological
and behavioral adaptations. Despite the low overlap
across eusocial species in the number of consistently
caste-biased genes, the common assumption that castes
have distinct transcriptional profiles has motivated a
wide range of studies examining patterns of selection
acting on queen versus worker protein sequences, which
are believed to exist in separate selective environments
[26, 27]. Recent studies have shown that genes with
caste-biased expression evolve faster at the sequence
level than their non-biased counterparts, although the
detected direction of selection for queen- and worker-
biased genes was sometimes opposite [28, 29]. However,
other factors may also affect the strength of selection
acting on caste-biased genes. Some of them are directly
linked to social insect life histories, such as an increased
number of queens per colony, which is predicted to
affect the strength of selection acting on the worker
genes by weakening relatedness within colony [27]. Also,
based on extensive data from a wide variety of species
(ranging from yeast [30] to mammals [31]), we know
that evolution of genes is shaped to a large extent by
their levels of expression and interactivity with other
genes [32]. More recently, this has also been confirmed in
social insects [33, 34]. However, the regulatory architec-
ture that governs queen and worker phenotypes remains

largely unknown in social insects. Thus, inferring the glo-
bal regulatory environment of caste-biased genes is the
key to understanding their long-term evolution.
The idea of a shared “genetic toolkit” across the sev-

eral eusocial lineages in Hymenoptera is based on the
Evo-Devo conceptual framework, which has shown that
convergent use of conserved sets of genes is often in-
volved in animal development and morphological
innovation [20, 21, 35–37]. A recent study [24] identified
only a small number of genes (15) constantly differen-
tially expressed across three distantly related hymenop-
teran species, but more overlap at the level of pathway
and biological function (five KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathways, five enriched Gene
Ontology (GO) functional categories).
In the current study, we take a novel approach to study

caste differentiation, and use weighted gene co-expression
network analysis (WGCNA) to define conserved sets of
co-regulated genes underlying queen and worker pheno-
typic traits, and other ant phenotypic traits. WGCNA
analysis provides an overview of the transcriptomic
organization [38, 39], and the relationships between sets
of genes with external, biological traits [40]. This is a more
complex approach than traditional pairwise differential
gene expression since it takes into consideration the rela-
tionships between genes via pairwise correlations between
gene expression profiles. WGCNA allows the identifi-
cation of modules of co-expressed genes constructed
from the expression profiles of all individuals simul-
taneously by using a hierarchical clustering approach.
This step operates on all data simultaneously and
does not require any a priori information about the
biological source of sequenced libraries (e.g., which were
made from queens and which from workers). Instead,
after constructing the gene modules, each module global
expression profile can be correlated with external traits to
look for significant associations [40].
Whereas most previous studies have focused on examin-

ing whether the same genes were involved across origins of
eusociality, we focus on ants, an ecologically diverse group
sharing the same origin of eusociality. First, we test
whether conserved sets of genes are involved in queen/
worker phenotypic differentiation. Second, we test whether
these genes are also involved in the parallel evolution of
other species-level traits. Third, we test predictions that
non-caste-associated and caste-associated sets of co-
expressed genes evolve at different rates by taking into ac-
count some of the network properties. Because the investi-
gation focuses on the adult stage, our data are not suitable
for testing the developmental toolkit hypothesis, which has
been the primary focus of investigation in social insects
[20, 21]. However, the overall question is conceptually the
same: are conserved regulatory modules involved in repro-
ductive division of labor?
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We identified common transcriptional profiles in female
castes (queens and workers) from 16 ant species (includ-
ing two social forms of Solenopsis invicta) from three sub-
families, which differed in a variety of key traits (Fig. 1).
We found that connectivity, expression levels and their in-
teractions were strongly correlated with evolutionary rates
of protein coding genes. The inferred modules are in-
volved in caste phenotypes and other derived traits im-
portant to social evolution, such as complete worker
sterility, the number of queens per colony, and even the
ecological invasiveness of a species. These results suggest
that evolutionarily stable modular genetic networks
participate in phenotypic maintenance of reproductive
division of labor. However, in addition to caste differenti-
ation, these modules play other roles, and parallel co-
option of these regulatory building blocks may also result
in repeated evolution of complex phenotypes.

Results
Assembly of transcriptomes
We sequenced 100 libraries (50 each from queens and
workers), representing three biological replicates of each
caste (two replicates for Formica exsecta [19]), using
whole-body samples. We recovered 719 Gb (on average

42 Gb per species) of 100-bp paired-end reads. Follow-
ing quality filtering, we constructed a de novo transcrip-
tome for each species separately using Trinity (release
2013-02-25 [41, 42]). The initial transcriptomes had a
total assembly length between 87.4 Mb and 620.8 Mb,
and the number of contigs varied between 77,922 and
161,555. The transcriptome contigs were cleaned from
probable exogenous RNAs and only contigs that showed
a significant BLAST hit to at least one of the nine pub-
lished hymenopteran genomes (seven ant species, Apis
mellifera, and Nasonia vitripennis) were kept for further
analysis (on average 60 % of the contigs), thus providing
evidence that the contigs are “true” genes and not
sequencing or assembly artifacts. De novo assembly
enables functional genomic studies, but has the potential
for mis-assemblies [43] and consequent biases in down-
stream analyses. Also, we focused on the presence of
conserved co-expressed sets of genes, and not on the
presence of taxonomically restricted genes, which are
not likely to be conserved across related species. We
made the choice to focus on “true” genes rather than un-
confirmed contig expression patterns. The initial and
final number of contigs can be found in Additional file 1.
After these quality-filtering steps, the final Trinity

Solenopsis invicta (monogynous)

Linepithema humile

Formica truncorum

Formica pratensis

Formica aquilonia

Formica pressilabris

Formica exsecta

Formica cinerea

Formica fusca

Lasius neglectus

Lasius turcicus

Monomorium pharaonis

Monomorium chinense

Solenopsis invicta (polygynous) 

Myrmica ruginodis

Myrmica rubra

Myrmica sulcinodis

Fig. 1 Phylogenetic relationships of 16 ant species studied shown with their pictures (source http://www.antweb.org/) and three biological traits:
worker sterility (grey square, can lay unfertilized eggs; black square, completely sterile), colony queen number (grey square, single queen; black
square, multiple queens), and invasiveness (grey square, not invasive; black square, can be invasive). The phylogenetic tree was constructed using
OGG alignments with the software RAxML (v. 8) [87]. The data set contained 1427 genes and 3.59 Mb of sequence, and the analysis was
partitioned by gene and conducted under a GTRGAMMAI model
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assemblies contained between 26,666 (Myrmica sulcino-
dis) and 77,633 contigs (F. exsecta), with an average num-
ber of 44,171 contigs. In total, 167,918 transcripts from
the 16 species were assigned to 9859 orthologous gene
groups (OGGs).

Constructing the ant gene co-expression network for all
16 species
We used the WGCNA package [40] to construct a
weighted gene co-expression network analysis (WGNCA)
on the entire data set using the mean of normalized ex-
pression counts for each OGG. WGCNA takes correla-
tions between gene expression patterns across sequenced
libraries and aggregates genes with similar profiles into
‘modules’. In addition to reducing the dimensionality of
data in this manner, a gene co-expression network also
describes connections between genes, which can be used
to study their possible interactions and network-level
properties [39, 44]. A total of 9859 OGGs of expression
data from all 16 species were analyzed with the WGCNA
package [40]. The input dataset consists of a table with
each row representing one of the 9859 OGGs and each
column one of the 100 samples (Additional file 2).
Modules of co-expressed genes are inferred using the
expression profiles of each sample regardless of the
species and caste. After the cleaning step, 2432 OGGs
were subsequently removed from the calculation owing to
too many missing samples or zero variance, which may
affect our ability to detect gene co-expression (Additional
file 3). After merging modules of highly co-expressed
OGGs, the final co-expression networks comprised 36
modules with >30 OGGs with an average number of 206
(standard deviation 118) (Fig. 2). A total of 5989 OGGs
(75 % of the total number of OGGs) initially analyzed
were assigned to co-expressed modules, and each module
contains expression data from all 16 species.
An online resource has been created to simplify

visualization of module organization, particularly the roles
of key genes (the website is available at http://mikheyev-
lab.github.io/Comparative-transcriptomics-of-ants/). The
online tool allows users to browse each module individu-
ally and to visualize expression levels and interactions
between key genes directly.

Conserved gene co-expression modules correspond to
female caste traits
We calculated the eigengene, which is a single value for
each sample for each module representative of the gene ex-
pression profiles of the samples in a module. The extent of
module involvement in various biological processes can be
tested by correlating eigengenes with external traits, such as
phenotypes [38, 40]. To test the hypothesis that conserved
sets of genes are involved in queen/worker phenotypic dif-
ferentiation, we investigated the relationship between the

eigengenes and the caste phenotypic traits, while controlling
for any phylogenetic bias in the dataset, using a phylogen-
etic mixed model implemented in the MCMCglmm pack-
age [45]. Expression of 32 out of 36 modules was
significantly correlated with one of the two female castes
(Fig. 2; Additional file 4; worker caste, 13; queen caste, 19).
WGCNA does not use information on caste-specific differ-
ential gene expression when inferring modules, so modules
that correlated strongly with caste were inferred by
WGCNA without a priori knowledge about caste-biased ex-
pression patterns, and include both caste-biased and non-
caste-biased genes (Additional file 5). Each module repre-
sents a set of co-expressed (and presumably interacting)
genes [46] that has been conserved across the ant
phylogeny (Fig. 2; Additional file 6).
To gain insight into the biological relevance and func-

tional significance of modules, we performed GO enrich-
ment analysis on the OGGs in each module. Complete
lists of BLAST annotations and GO terms associated
with each module are available in Additional files 7 and
8. The modules are enriched for specific biological func-
tions related to either worker or queen phenotypes. For
instance, two worker-associated modules (7 and 10) are
linked to behavior and sensory perception, in accordance
with what we would expect from their life history traits
(Table 1; Additional file 8) [47].

Modules are co-opted for diverse phenotypic traits
Because genes and regulatory modules involved in queen
and worker phenotypes may contribute to other life-
history traits, we were interested to know whether mod-
ules associated with caste explain other important pheno-
typic traits of social insects, including the extent of worker
sterility, the number of colony queens, and invasiveness.
We found eight modules that were correlated with mul-
tiple biological traits (Fig. 2; Additional file 4). Interest-
ingly, several modules were associated with similar traits,
suggesting that the evolution of some traits may be linked.
e.g., modules 2, 7, and 15 were all associated with the
queen caste, worker sterility, and non-invasiveness. Simi-
larly, modules 18, 20, and 36 were associated with caste
traits and single-queen colonies. More generally, it ap-
pears that the same modules play a role in influencing bio-
logical traits beyond caste differentiation. Although we
focused on traits most likely arising from queen–worker
differences, which was the major axis of variation in the
data set, it is possible that the same modules may play a
role in a wide variety of other traits.

Module association with caste does not directly influence
protein sequence evolution
We ran three separate analyses to understand the effects
of several explanatory variables on the dN/dS. First of all,
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we compared dN/dS, expression levels, and connectivity
values between OGGs in caste-associated and non-caste-
associated modules. OGGs in worker-associated modules
had significantly higher dN/dS than OGGs in queen-
associated modules (generalized linear model (GLM),
p = 0.01; Fig. 3), and OGGs in non-caste-associated
modules (GLM, p = 0.016). OGGs in queen-associated
modules and in non-caste-associated modules were not
different to each other in terms of dN/dS (GLM, p = 0.43;
Fig. 3). Additionally, worker-associated genes had signifi-
cantly lower connectivity than queen- (GLM, p = 0.034)
and non-caste-associated genes (GLM, p= 0.014; Additional
file 9). No significant difference in connectivity could be
found between queen- and non-caste-associated genes
(GLM, p= 0.07; Additional file 9). No significant difference
in connectivity could be found between queen- and non-
caste-associated genes (GLM, p= 0.07; Additional file 9).
Furthermore, worker-associated genes had higher expres-
sion levels than queen- (GLM, p < 0.001) and non-caste-
associated genes (GLM, p < 0.001; Additional file 10). No
difference in expression levels could be found between
queen- and non-caste-associated genes (GLM, p= 0.262;
Additional file 10).

Second, we tested the effects of OGG connectivity and ex-
pression levels on the dN/dS values. We found that OGG ex-
pression levels and connectivity were negatively correlated
with dN/dS (GLM, p < 0.01; Additional file 11), a pattern ob-
served also in model species (e.g., yeast, [30, 32, 48]) and
that may be universal to all living organisms.
Consequently, we included connectivity and expression

level terms and their interactions as predictors in the GLM
analysis of evolutionary rate. When taking these predictors
into consideration, OGGs in queen- and worker-associated
modules evolved at a higher rate than OGGs in non-caste-
associated modules (GLM, pworker < 0.01 and pqueen < 0.001),
and we found no more significant differences in dN/
dS between queen- and worker-associated modules
(GLM, p = 0.17) (Additional file 12). Instead, dN/dS
differences were best explained not by the main effects, but
by the interactions between caste association, expression or
connectivity. Queen-associated OGGs evolved more slowly
than worker-associated OGGs with a corresponding level
of connectivity. By contrast, queen-associated OGGs
evolved faster than worker-associated OGGs with a similar
level of expression (Additional file 12). These data sug-
gest that caste-biased selection acts on the genome in

Fig. 2 Correlation between module eigengenes and the biological traits (caste, worker sterility, colony queen number and invasiveness). Modules
were clustered based on GO term similarities obtained with GOSemSim [93], which computes semantic similarity among sets of GO terms
(Additional file 8). Expression of most modules is strongly associated with caste phenotypes. In addition, expression of several of these modules
was also associated with other phenotypes, such as obligate worker sterility, colony queen number, and invasiveness. This shows that modules
likely play multiple roles, and that their constituent genes have many functions
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Table 1 GO terms found enriched in each module

Module Caste Worker sterility Queen number Invasiveness GO Term

1 Queen NTA NTA NTA cellular protein modification process

1 Queen NTA NTA NTA protein modification process

1 Queen NTA NTA NTA macromolecule modification

1 Queen NTA NTA NTA cellular protein metabolic process

1 Queen NTA NTA NTA cytoplasm organization

2 Queen Sterile Single Not invasive positive regulation of actin nucleation

2 Queen Sterile Single Not invasive positive regulation of Arp2/3 complex-mediated actin nucleation

2 Queen Sterile Single Not invasive regulation of Arp2/3 complex-mediated actin nucleation

2 Queen Sterile Single Not invasive phosphorylation

2 Queen Sterile Single Not invasive protein metabolic process

4 Queen NTA NTA NTA negative regulation of Ras protein signal transduction

4 Queen NTA NTA NTA negative regulation of small GTPase mediated signal transduction

4 Queen NTA NTA NTA negative regulation of signal transduction

4 Queen NTA NTA NTA Ras protein signal transduction

4 Queen NTA NTA NTA negative regulation of response to stimulus

5 Queen NTA NTA NTA cellular response to alcohol

5 Queen NTA NTA NTA adenine salvage

5 Queen NTA NTA NTA cellular response to ecdysone

5 Queen NTA NTA NTA regulation of protein secretion

5 Queen NTA NTA NTA negative regulation of protein secretion

6 Queen Sterile NTA NTA mitotic DNA damage checkpoint

6 Queen Sterile NTA NTA mitotic DNA integrity checkpoint

6 Queen Sterile NTA NTA regulation of protein ubiquitination

6 Queen Sterile NTA NTA negative regulation of protein ubiquitination

6 Queen Sterile NTA NTA positive regulation of protein ubiquitination

7 Worker Sterile NTA Not invasive autophagy

7 Worker Sterile NTA Not invasive G-protein coupled receptor signaling pathway

7 Worker Sterile NTA Not invasive regulation of synaptic transmission, cholinergic

7 Worker Sterile NTA Not invasive selenocysteinyl-tRNA(Sec) biosynthetic process

7 Worker Sterile NTA Not invasive intraspecies interaction between organisms

8 Worker NTA NTA NTA protein import into mitochondrial matrix

8 Worker NTA NTA NTA negative regulation of TOR signaling

8 Worker NTA NTA NTA water-soluble vitamin metabolic process

8 Worker NTA NTA NTA cellular aldehyde metabolic process

8 Worker NTA NTA NTA vitamin metabolic process

9 Worker NTA NTA NTA double-strand break repair

9 Worker NTA NTA NTA sphingolipid metabolic process

9 Worker NTA NTA NTA double-strand break repair via homologous recombination

9 Worker NTA NTA NTA recombinational repair

9 Worker NTA NTA NTA sodium ion transport

10 Worker NTA NTA Not invasive system process

10 Worker NTA NTA Not invasive neurological system process

10 Worker NTA NTA Not invasive sensory perception of chemical stimulus

10 Worker NTA NTA Not invasive sensory perception
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Table 1 GO terms found enriched in each module (Continued)

10 Worker NTA NTA Not invasive locomotory behavior

11 NTA NTA NTA NTA cell division

11 NTA NTA NTA NTA macromolecule metabolic process

11 NTA NTA NTA NTA negative regulation of developmental process

11 NTA NTA NTA NTA DNA conformation change

11 NTA NTA NTA NTA cellular component biogenesis

12 Worker NTA NTA NTA myofibril assembly

12 Worker NTA NTA NTA dicarboxylic acid metabolic process

12 Worker NTA NTA NTA carbohydrate metabolic process

12 Worker NTA NTA NTA actomyosin structure organization

12 Worker NTA NTA NTA striated muscle cell development

13 Queen NTA NTA NTA RNA 3'-end processing

13 Queen NTA NTA NTA melanin biosynthetic process

13 Queen NTA NTA NTA snRNA 3'-end processing

13 Queen NTA NTA NTA U6 snRNA 3'-end processing

13 Queen NTA NTA NTA mRNA polyadenylation

14 NTA NTA NTA NTA receptor clustering

14 NTA NTA NTA NTA spinal cord development

14 NTA NTA NTA NTA peptide metabolic process

14 NTA NTA NTA NTA cellular amide metabolic process

14 NTA NTA NTA NTA neuromuscular synaptic transmission

15 Queen Sterile NTA Not invasive proteolysis

15 Queen Sterile NTA Not invasive Notch signaling pathway

15 Queen Sterile NTA Not invasive ephrin receptor signaling pathway

15 Queen Sterile NTA Not invasive establishment of body hair or bristle planar orientation

15 Queen Sterile NTA Not invasive lipid transport

16 Queen NTA NTA NTA leukocyte differentiation

16 Queen NTA NTA NTA in utero embryonic development

16 Queen NTA NTA NTA neural precursor cell proliferation

16 Queen NTA NTA NTA stem cell proliferation

16 Queen NTA NTA NTA chordate embryonic development

17 Worker NTA NTA NTA chitin metabolic process

17 Worker NTA NTA NTA amino sugar metabolic process

17 Worker NTA NTA NTA glucosamine-containing compound metabolic process

17 Worker NTA NTA NTA aminoglycan metabolic process

17 Worker NTA NTA NTA carbohydrate derivative metabolic process

18 Queen NTA Single NTA cellular transition metal ion homeostasis

18 Queen NTA Single NTA transition metal ion homeostasis

18 Queen NTA Single NTA DNA topological change

18 Queen NTA Single NTA transition metal ion transport

18 Queen NTA Single NTA snRNA metabolic process

19 NTA NTA NTA NTA one-carbon compound transport

19 NTA NTA NTA NTA urea transport

19 NTA NTA NTA NTA tRNA 5'-leader removal

19 NTA NTA NTA NTA urea transmembrane transport

Morandin et al. Genome Biology  (2016) 17:43 Page 7 of 19



Table 1 GO terms found enriched in each module (Continued)

19 NTA NTA NTA NTA cellular macromolecule localization

20 Queen NTA Single NTA nuclear-transcribed mRNA catabolic process, nonsense-mediated decay

20 Queen NTA Single NTA cellular macromolecule catabolic process

20 Queen NTA Single NTA cellular localization

20 Queen NTA Single NTA tissue regeneration

20 Queen NTA Single NTA nuclear export

21 Queen NTA NTA NTA Rho protein signal transduction

21 Queen NTA NTA NTA Ras protein signal transduction

21 Queen NTA NTA NTA cell adhesion

21 Queen NTA NTA NTA biological adhesion

21 Queen NTA NTA NTA regulation of Ras protein signal transduction

22 Queen NTA NTA NTA cellular protein metabolic process

22 Queen NTA NTA NTA single-organism intracellular transport

22 Queen NTA NTA NTA protein metabolic process

22 Queen NTA NTA NTA autophagic cell death

22 Queen NTA NTA NTA salivary gland cell autophagic cell death

23 Queen NTA NTA NTA purine ribonucleoside catabolic process

23 Queen NTA NTA NTA ribonucleoside catabolic process

23 Queen NTA NTA NTA purine nucleotide catabolic process

23 Queen NTA NTA NTA purine nucleoside catabolic process

23 Queen NTA NTA NTA nucleoside catabolic process

24 Worker NTA NTA NTA cellular amino acid metabolic process

24 Worker NTA NTA NTA positive regulation of cysteine-type endopeptidase activity
involved in apoptotic process

24 Worker NTA NTA NTA alcohol catabolic process

24 Worker NTA NTA NTA positive regulation of cysteine-type endopeptidase activity

24 Worker NTA NTA NTA positive regulation of endopeptidase activity

25 Worker NTA NTA NTA cofactor metabolic process

25 Worker NTA NTA NTA cofactor biosynthetic process

25 Worker NTA NTA NTA single-organism biosynthetic process

25 Worker NTA NTA NTA coenzyme metabolic process

25 Worker NTA NTA NTA coenzyme biosynthetic process

26 Worker NTA NTA NTA ribosome assembly

26 Worker NTA NTA NTA organophosphate catabolic process

26 Worker NTA NTA NTA carbohydrate derivative catabolic process

26 Worker NTA NTA NTA extracellular polysaccharide metabolic process

26 Worker NTA NTA NTA extracellular polysaccharide biosynthetic process

27 Worker NTA NTA NTA cellular metabolic process

27 Queen NTA NTA NTA DNA metabolic process

27 Queen NTA NTA NTA cellular process

27 Queen NTA NTA NTA cellular macromolecule metabolic process

27 Queen NTA NTA NTA nucleobase-containing compound metabolic process

28 Queen NTA NTA NTA primary metabolic process

28 Queen NTA NTA NTA organic substance metabolic process

28 Queen NTA NTA NTA protein folding
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Table 1 GO terms found enriched in each module (Continued)

28 Queen NTA NTA NTA cellular macromolecule metabolic process

28 Queen NTA NTA NTA cellular protein metabolic process

29 Queen NTA NTA NTA amino acid transmembrane transport

29 Queen NTA NTA NTA amino acid transport

29 Queen NTA NTA NTA mitotic chromosome condensation

29 Queen NTA NTA NTA chromosome condensation

29 Queen NTA NTA NTA anion transmembrane transport

30 Queen NTA NTA NTA mitotic DNA damage checkpoint

30 Queen NTA NTA NTA mitotic DNA integrity checkpoint

30 Queen NTA NTA NTA regulation of protein ubiquitination

30 Queen NTA NTA NTA negative regulation of protein ubiquitination

30 Queen NTA NTA NTA positive regulation of protein ubiquitination

31 Queen NTA NTA NTA RNA processing

31 Queen NTA NTA NTA RNA methylation

31 Queen NTA NTA NTA RNA modification

31 Queen NTA NTA NTA cellular component organization or biogenesis

31 Queen NTA NTA NTA cellular component biogenesis

32 Worker NTA NTA NTA translation

32 Worker NTA NTA NTA cellular macromolecule biosynthetic process

32 Worker NTA NTA NTA gene expression

32 Worker NTA NTA NTA macromolecule biosynthetic process

32 Worker NTA NTA NTA biosynthetic process

33 Worker NTA NTA NTA hydrogen transport

33 Worker NTA NTA NTA proton transport

33 Worker NTA NTA NTA hydrogen ion transmembrane transport

33 Worker NTA NTA NTA monovalent inorganic cation transport

33 Worker NTA NTA NTA inorganic cation transmembrane transport

34 Queen NTA NTA NTA response to misfolded protein

34 Queen NTA NTA NTA proteasome localization

34 Queen NTA NTA NTA response to topologically incorrect protein

34 Queen NTA NTA NTA cellular response to topologically incorrect protein

34 Queen NTA NTA NTA mitochondrial fusion

35 NTA NTA NTA NTA phospholipid transport

35 NTA NTA NTA NTA organophosphate ester transport

35 NTA NTA NTA NTA lipid transport

35 NTA NTA NTA NTA lipid localization

35 NTA NTA NTA NTA Kupffer's vesicle development

36 Worker NTA Single NTA synapsis

36 Worker NTA Single NTA synaptonemal complex assembly

36 Worker NTA Single NTA reciprocal meiotic recombination

36 Worker NTA Single NTA reciprocal DNA recombination

36 Worker NTA Single NTA chromosome organization involved in meiosis

No enriched GO terms could be found for module 3. NTA non-trait associated
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a complex way that is modulated by expression and
the regulatory interactions between genes.

Only one gene was consistently caste-biased
Although hundreds (e.g., Formica aquilonia) or even
thousands (e.g., Linepithema humile) of genes showed
caste-specific bias in individual species (Additional file 1),
there was very little overlap among these species-specific
sets (Fig. 4). In fact, when all 16 species were considered,
only a single gene was differentially expressed between
queens and workers (overexpressed in workers) in all spe-
cies; this was the myosin light chain (Fig. 4). The myosin
light chain gene is most likely a housekeeping gene that
has caste-biased expression patterns owing to different de-
mands on muscular activity by queens and workers, but it
is expressed in every cell and is not a known caste-specific
gene. Additionally, the worker-biased pattern of the my-
osin light chain may be due to a higher concentration of
muscle cells present in workers compared with queens.
Also, we acknowledge that a number of potential factors
are likely to affect our ability to detect common caste-
biased genes across our studied species (e.g., number of
replicates, sampling period, statistical power over multiple
datasets) that are beyond this comparative study. Add-
itionally, at the level of functional composition, we found
no GO terms consistently enriched for caste-biased genes
across all 16 species (Fig. 5).

External validation of module preservation
To verify that modules identified in this study represent
technically reproducible and evolutionarily useful
features, we assessed the extent of module preservation
between our work and a recent WGCNA investigation
that used RNA-seq to examine age-based, behavioral
division of labor in workers of the pharaoh ant (Mono-
morium pharaonis) [33]. Although the earlier study did
not include queens, and had a much smaller sample size
(n = 24), 11 of the modules identified in the present
study significantly overlapped with modules inferred
from M. pharaonis behavioral data (false discovery rate
(FDR) corrected p < 0.05; Additional file 13). Interest-
ingly, genes in queen-associated modules, as well as
worker-associated modules, were also involved in M.
pharaonis worker division of labor, further supporting
the roles of modules in multiple contexts.

Discussion
This study suggests that morphological and physiological
differences between queens and workers result from the
differential expression of evolutionarily conserved sets of
co-expressed genes (modules). In our analysis, large
fractions of all transcriptomes could be partitioned into
modules. Expression of almost all modules was corre-
lated with queen and worker phenotypes, suggesting that
they may reflect conserved regulatory control mecha-
nisms. Many other colony-level features emerge from
queen–worker interactions and phenotypes. We there-
fore also predicted that modules associated with queen
and worker phenotypic differentiation would also be cor-
related with species traits that evolved in parallel, such
as complete worker sterility, colony queen number, and
invasiveness (Fig. 1). We found this to be the case, with
the expression of several modules being associated with
multiple biological traits (e.g., module 2 is associated
with caste, worker sterility, queen number and invasive-
ness; Fig. 2). It is possible that these modules regulate
the expression and evolutionary maintenance of a variety
of phenotypes in multiple ant species.
Several modules were associated with the same sets of

traits, such as caste phenotypes, worker reproduction
and invasiveness. The traits selected for this analysis
span the range from social to ecological, each evolved
multiple times in the species under study; certainly other
traits could be included in the model. Furthermore, it is
important to note that the significance of the GLM coef-
ficients merely suggest that they are associated with vari-
ation in eigengene expression, and that they don’t
provide a complete description of the sources of vari-
ation in this data set. There may be factors, not exam-
ined in this study, which explain even more variation,
and more comprehensive comparative studies will be
needed to determine the best predictors. Nonetheless,
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Fig. 3 Box plots showing the distribution of dN/dS ratios before
accounting for OGG connectivity and expression levels for OGGs in
non-caste-associated modules (NTA), OGGs in queen-associated modules
(Queen) and OGGs in worker-associated modules (Worker), and calculated
using PAML. The median dN/dS values are indicated above the boxplot.
OGGs in worker-associated modules had significantly higher dN/dS than
OGGs in queen-associated modules, and OGGs in non-caste-associated
modules. * p< 0.05, ** p< 0.01
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some biologically suggestive patterns emerge. For ex-
ample, worker sterility appears to be linked to invasive-
ness (Fig. 2), a pattern also found in several invasive
species [49], suggesting that the two traits may be
somehow transcriptionally correlated. This pattern ap-
pears to hold when considering the top invasive ant
species selected by IUCN [50], and not present in our
data set: Pheidole megacephala [51] and Wasmannia
auropunctata [52] workers don’t have ovaries,
whereas Anoplolepis gracilipes workers have ovaries [53],

but don’t appear to reproduce (similarly to Lasius
neglectus) [54]. This raises the intriguing possibility that
the evolution of some traits may be linked in unexpected
ways though sharing the same regulatory machinery, and
that selection for one trait may have the effect of facilitat-
ing the evolution of other traits. These results are clearly
preliminary, and worker sterility is neither a necessary nor
sufficient condition for invasiveness, but we predict
that some distantly related invasive ants may have
similarities in gene expression profiles, and possibly even
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Fig. 4 Only a single gene is consistently differentially expressed between queens and workers. The plot shows the number of caste differentially
expressed genes (DEGs) in common in a variable number of randomly selected species (bootstrap resampling 100 times). This pairwise analysis
shows either that few genes are consistently caste-biased across species or that comparison of differentially expressed genes lacks power to detect
these biases. By contrast, network analysis manifested significant underlying regulatory structure, suggesting that it is a more powerful approach (Fig. 2).
A similar analysis was conducted at the level of GO terms (Fig. 5)
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Fig. 5 No overlap was found in the number of enriched GO terms for caste-biased genes across all 16 species. The plot shows the number of
enriched GO terms for caste-biased genes in common in a variable number of randomly selected species (bootstrap resampling 100 times). The
results of this analysis parallel findings at the level of individual differentially expressed genes (Fig. 4)
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convergent patterns of selection. In the future, more work
will need to assess the generality of this pattern.
In our large-scale comparative analysis we found that

genes in caste-associated modules evolved faster than
genes in non-caste-associated modules. Morph-biased
genes are predicted to evolve more rapidly due to re-
duced antagonistic pleiotropy [55, 56]. In accordance
with these predictions, previous studies focusing on
single species have shown that genes with caste-biased
expression are more likely to evolve faster than genes
with unbiased expression [28, 29]. Our study is the first
to examine patterns of selection across multiple species
of ants with a common origin of caste differentiation.
However, detecting selection is subject to a large number
of factors, such as a gene’s transcriptional abundance,
and its importance within the protein interaction network
[57–59]. For example, gene significance (connectivity) was
strongly associated with higher expression level and lower
evolutionary rate in our study (GLM, p < 0.001), as well as
in studies of other systems [34]. Expression and network
effects of highly abundant genes are also well known to
affect evolutionary rates, potentially confounding analysis
of selection pressure [32]. Indeed, when analyzed as sole
factors, caste had an effect on protein evolutionary rates,
which disappeared when network effects were considered
(Additional file 12). Our finding that modules correlated
with caste also act in other phenotypic contexts suggests
that most caste-biased genes play multiple roles. Together
with recent findings suggesting that genes may fluctuate
in caste-bias across development [19, 60, 61], this may
explain why there is no persistent queen or worker-
specific selection, i.e., caste-biased genes in one context
may show other expression patterns in different develop-
mental stages, or tissues. That being said, evolutionary
rates of caste-biased genes had significant interactions
with expression and connectivity (Additional file 12),
suggesting that caste-biased selection may be modulated
by gene expression levels and the shape of gene co-
expression (or protein interaction) networks. Our results
on caste bias parallel those of a recent study that showed
that genes involved in another social context, nursing and
foraging in an ant, differ in expression level and connect-
ivity, and interactions with these terms are important
predictors for evolutionary rates [33].
Our analysis covers only genes with orthologs in most

species. We took this approach for several reasons. First,
most species in our study have no available genomic re-
sources, and we had to construct de novo transcriptomes
for each of them, a technique that enables functional
genomic studies, but has the potential for wide-ranging
mis-assemblies [43]. By focusing on previously computed
and curated orthologous gene groups [62], we were able
to select the best fitting models for comparative analysis
among hundreds of thousands of candidate transcripts.

Second, we focused on the presence of conserved gene
regulatory machinery across multiple ant species, and not
on the presence of taxonomically restricted genes. The
latter are likely to be involved in species-specific functions
[63], but were beyond the scope of this study. Never-
theless, it is worth noting that recent studies have
highlighted potential roles of novel genes in caste
evolution [25, 29, 34, 64–66]. In any case, taxonomic-
ally restricted genes are likely to interact with existing
regulatory pathways, and the manner in which they
integrate into the conserved modules will be a fascinating
topic for future research. We expect that novel genes will
be poorly connected at first, which may allow greater rates
of evolution [34], based on network properties alone.
A key question addressed in this study is “how does

selection act on a gene important to queen versus worker
phenotypes?” To answer this question we attempted to
characterize gene expression by measuring their expres-
sion in whole adults. We believe that this approach
approximates the proportional contribution of each gene
to fitness in each caste. For example, queens have propor-
tionally larger ovaries, and we expect higher levels of
ovary-expressed genes in queen bodies overall as a result,
reflecting the relative importance of ovaries to the queen
phenotype. However, this approach has a number of sig-
nificant limitations by greatly over-simplifying the nature
of transcriptional regulation in an organism. Tissue-
specific expression studies, particularly taken over the
course of development, may have greater power to detect
caste-specific differences, both in terms of the number of
differentially expressed genes, and co-expression network
structure. As a result, our data most likely represent an
underestimate of the true number of modules. However, a
comparative study of tissues-specific transcription at such
a phylogenetic scale requires confident assignment of
orthology and function, which would be difficult given the
marked differences between queens and workers in the
presence and size of many glands [67] and some organs
(e.g., ovaries, which are absent in the workers of several
lineages; Fig. 1). Future studies should focus on the com-
parative analysis of expression patterns in specific tissues;
such studies will likely provide valuable functional insight
into the function and evolution of these organs.
To date, a large number of studies, conducted in diverse

systems, have found a relatively small set of genes consist-
ently associated with caste differentiation [19, 24, 25, 36].
A recent study comparing differentially expressed caste-
biased genes in an ant and a wasp likewise found no
overlap in differentially expressed genes, but found some
overlap in GO terms [24]. In our data set we found no
enriched GO terms that were common to all 16 species
(Fig. 5). However, the type II error increases multiplica-
tively when multiple data sets are compared, making it
statistically unlikely to find elements, be it genes or GO
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terms, common to all of these 16 species. For instance,
only a single gene was found to be differentially expressed
in all species, a result that strikes us as biologically un-
likely. However, this result parallels findings in honey bees
(Apis), where microarray experiments found little overlap
in differentially expressed genes within the same genus
[68]. By analyzing all the genes at once, gene network ana-
lysis circumvents the problem of multiple comparisons,
though at the cost of species-level resolution.
In addition WGCNA provides a more complex ap-

proach that captures system-level properties [40]. Most
phenotypes involve interactions of proteins from diverse
biochemical pathways. Although modules inferred from
WGNCA do not necessarily correspond to biochemical
pathways, or other classical components of cellular
organization, WGCNA performs well in reconstructing
the overall complex structure of protein–protein inter-
action networks [46]. In the past, for example, WGCNA
has succeeded in identifying candidate genes involved in
Alzheimer disease by comparing human and mouse
brain transcriptomes [69], or in visualizing network
structure and inferring phenotype–genotype interactions
of numerous diseases such as autism [70]. Moreover,
WGCNA has been used to uncover module conserva-
tion among species, and to identify crucial drivers of
evolutionary changes between humans and chimpanzees
[38]. Applying this approach to evolution of social insect
phenotypes, we show that WGCNA recovers key mod-
ules responsible for a range of phenotypic traits, at the
individual and colony levels. However, the genetic toolkit
hypothesis postulates that conserved developmental
pathways may have been co-opted in the evolution of
reproductive division of labor, a hypothesis that has
received considerable attention [20, 21, 35–37]. Although
our data come from adults only, and do not allow us to
test hypotheses regarding the causes of caste determin-
ation during development, or hypotheses regarding
whether the same genes would be involved in multiple
origins of eusociality, they do suggest that there are indeed
conserved regulatory modules that are repeatedly co-
opted by evolution. It will be interesting to apply network
analyses to study evolution of eusociality including other
ants, particularly poneroids, which were not sampled in
the current study, to see how conserved the patterns are
across all ants, and also across its many different origins
in hymenopterans. Comparisons across origins of eusoci-
ality would reveal whether ‘toolkits’ associated with the
evolution of social behavior exist. In particular, analysis of
transcriptional networks during development will allow
for a powerful test of the genetic toolkit hypothesis.

Conclusions
This study is the first to investigate in-depth a single
eusocial clade to understand the extent to which caste-

associated regulatory architecture is preserved across
taxa. We have identified a number of functionally im-
portant transcriptional modules strongly associated with
caste phenotypic differences. These modules may also be
co-opted for other types of phenotypic novelty, including
social and ecological traits. If so, they may serve as
building blocks of phenotypic innovation.

Methods
De novo transcriptome assembly and mapping
Detailed descriptions of sample collection, RNA extractions
and cDNA synthesis can be found in Additional file 14.
Workers were collected at the surface of the colony mound,
and are most likely all foragers. The queens were all col-
lected from large mature colonies. In total, we sequenced
100 libraries from whole-body queen and worker samples,
representing biological replicates of each caste. The number
of replicates can be found in Additional file 1. The quality
of raw reads was assessed with FastQC tools (http://
www.bioinformatics.bbsrc.ac.uk/projects/fastqc), and
adaptor sequences were removed using cutadapt
[71]. Reads were trimmed to remove low quality
bases, using a dynamic trimming perl script included
in the SolexaQA package [72]. In the absence of a
reference genome for most species, we used a de
novo assembly method to construct reference tran-
scriptomes for each species separately for use in read
mapping for caste expression profiling, using Trinity
software (release 2013-02-25, default settings) [41,
42]. To remove contigs potentially from non-ant ori-
gin [73] and to include only transcripts with hom-
ology to known hymenopteran genes, only contigs
which showed significant BLAST hits to the nine
published hymenopteran genomes (seven ant species,
Apis mellifera, and Nasonia vitripennis) were kept for
further analysis (BLASTx, e-value cutoff ≤1 × 10–5,
query coverage ≥70 %). Because most transcripts were
filtered downstream during orthology assignment, we
used a relatively permissive BLAST cutoff at this step.

Quality control
Visual inspection of the multidimensional scaling (MDS)
plot revealed that library replicates were similar to each
other, and samples clustered more within each species
than by caste (Additional file 15). RNA-seq involves a
number of steps during library preparation, which may
result in biases (such as batch effect). We used RNA
spike-ins to evaluate the success of our RNA library
preparation and sequencing. After mapping, we found a
strong positive correlation between the observed ERCC
spike-in expression levels and the expected abundance
for each species (Additional file 16).
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Protein coding prediction and orthology assignment
The output of the Trinity pipeline is a set of transcripts,
including alternatively spliced isoforms determined during
graph reconstruction in the Butterfly step. These tran-
scripts are grouped into gene components, which rep-
resent likely multiple isoforms. To minimize effects of
possible isoform variation between species, we kept
only the longest component for further analysis. Next,
we used two software packages, OrfPredictor [74] and
FrameDP [75], to predict protein coding sequences of
filtered contigs. We used OGGs for the sub-family
Formicidae from OrthoDB7 as the reference for our
own orthology assignment. Protein sequences were
downloaded from the OrthoDB FTP site [62], and
aligned using PRANK (v. 140603) [76], using a neigh-
bor joining guide tree generated by MAFFT (v. 7.164)
[77]. These alignments were used to generate hidden
Markov models (HMMs) using HMMER (v. 3.1b1;
http://hmmer.org). We then used these models within
the HaMStr [78] pipeline to assign each gene prediction
to an OrthoDB OGG, using default settings. Only OGGs
with contigs from at least four species were retained for
further analysis. This method selected the best fit among
alternative open reading frame predictions, and assigned
genes to independently established OGGs, which should
facilitate future comparative work.

Caste-biased gene expression
Paired-end reads were mapped to the de novo transcrip-
tomes using RSEM [79], and the resulting expected counts
were used in the subsequent differential gene expression
analysis with the R Bioconductor package EdgeR [80].
Reads generated by the three queen and the three worker
samples were used as replicates. Transcripts without, or
with very low, read counts were filtered out before perform-
ing the test, using the threshold determined by the detec-
tion limit of the RNA spike-in analysis (Additional file 1).
As recommended by EdgeR, TMM normalization was ap-
plied to account for compositional difference between li-
braries, and expression differences were considered
significant at a FDR < 0.05. Pairwise comparison analyses
between castes were performed for all species separately.
Subsequently, differentially expressed genes were assigned
to their respective OGGs, and caste-bias expressions were
compared within each OGG to find common caste differ-
entially expressed genes among all species.
In order to verify whether caste-biased gene expression

has a phylogenetic signal and also that our phylogenetic
sampling was not affecting our ability to detect commonly
differentially expressed genes, we compared the number
of commonly differentially expressed genes across seven
Formica species and across seven randomly selected non-
Formica species. We found a very similar trend for both

pairwise relationships, and very few genes were found
commonly differentially expressed in both cases (non-For-
mica species, 7; Formica species, 21; Additional file 17).

Generation of weighted gene co-expression networks and
identification of functional modules
Trimmed mean of M-values normalization was applied to
the raw count expression data (WGCNA) using the R
package EdgeR [80]. Subsequent weighted gene co-
expression network analysis was conducted using the R
package WGCNA [40]. The input dataset consisted of a
matrix with 100 columns, each corresponding to a queen
or worker RNA-seq library from the 16 species, and 9859
lines, each representing one OGG expression level. If mul-
tiple transcripts from the same species were present in
one OGG, their expression levels were averaged. This data
set was first filtered to remove OGGs (lines) with too
many missing values, following WGCNA cutoff threshold
recommendations (Additional file 3). Additionally, one
outlier sample (column) was filtered out following the
WGCNA package guidelines, and consequently removed
from the differential gene expression analysis described
above (Additional file 18). A soft thresholding power of 8
was chosen based on the criterion of approximate
scale-free topology (Additional file 19). After calculat-
ing topological overlap values for all pairs of ortholo-
gous gene groups, a hierarchical clustering algorithm
identifies modules of highly interconnected genes. Subse-
quently, modules of highly co-expressed OGGs were
merged together using a cutoff value of 0.2 and the mini-
mum module size was set to 30 (Additional file 20).

Evolutionary rate analysis
Because our transcriptomes may contain stochastic
variation in the number of reconstructed paralogs, for
analysis of evolutionary rate only a single gene predic-
tion per species, the one most closely matching the
reference HMM, was chosen per OrthoDB gene using
HaMStr. These genes were re-aligned using PRANK [76]
as protein sequences. Confidence of these alignments
was assessed using GUIDANCE [81], PRANK realign-
ments based on 32 bootstrap replicates, using the heads-
or-tails method. Residues with GUIDANCE confidence
less than 0.9 were replaced by Ns. Genes with fewer than
150 non-ambiguous nucleotides were eliminated from
the analysis. The best maximum likelihood tree was
computed with codonPhyML (v. 1.00) [82]. The Codeml
module from PAML (v. 4.4), [83] was used to estimate
dN/dS of different genes using these trees and alignments,
with branch lengths and transition/transversion estimates
from codonPhyML as starting values. We estimated overall
dN/dS for each OGG using a one-ratio model (model = 0),
providing a single estimate for each OGG to match other
single OGG metrics, such as connectivity and expression.
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Three separate GLM analyses were conducted using
the glm function in R with 1000 bootstrap pseudorepli-
cates. First, we investigated the effects of caste on dN/dS,
using OGG dN/dS values as the main effects and caste
OGG association as the explanatory variables, GLM =
dN/dS ~ Caste. A similar procedure was used with
OGG connectivity and expression levels, GLM = Con-
nectivity ~ Caste and GLM = Expression ~ Caste.
Second, we investigated the effect of OGG connectivity

and expression levels (explanatory variables) on the dN/dS
values (main effect), GLM= dN/dS ~ Exp + Connectivity.
Third, we used a single model to investigate the com-

bined effects of OGG connectivity, OGG expression levels
and biological traits (explanatory variables) on OGG dN/dS
values (main effect) GLM= dN/dS ~ Connectivity * Caste +
Expression * Caste.
For all three GLM analyses, biological trait effects were

derived from module association with queen, worker or
NTA (Fig. 2), and dN/dS, connectivity and expression level
values were exponentially transformed to reach a normal
distribution before being processed. Detailed scripts can
be found in https://github.com/MikheyevLab/Compara-
tive-transcriptomics-of-ants under a MIT license.

Functional annotation of co-expressed modules
GO terms for all genes were determined using Blast2GO
(using BLASTp with an e-value cutoff ≤ 10–3) [84]. We
used the GOstats package for R [85] to conduct GO
term enrichment analysis on gene sets included in the
modules described above, using the set of all genes for
which GO terms were available as the universe.

Module preservation
We also conducted module preservation statistics using
WGCNA modules retrieved from a recent study of worker
behavior [33, 86]. We compared the extent of module pres-
ervation in an independent data set by checking whether
there was correspondence in module assignment between
this study and an earlier study of behavioral polyethism in
M. pharaonis, which also used WGCNA [33]. Orthologs of
M. pharaonis genes were selected using BLAST. We then
calculated how often genes were classified as belonging to
the same module by both studies [86]. Statistical signifi-
cance was determined using Fisher's exact test, adjusted for
multiple comparisons using FDR with the FDR set at 0.05.

Phylogenetic tree construction
We used OGG alignments produced for the PAML analysis
that had no missing data to construct a phylogenetic tree of
species relationships using RAxML (v. 8) [87]. The data set
contained 1427 genes and 3.59 Mb of sequence, and the
analysis was partitioned by gene and conducted under a
GTRGAMMAI model.

Module and phenotype relationship
In order to determine the relationship between modules
and phenotypic traits (e.g., caste, worker sterility, queen
number, invasiveness), we calculated the average signed
normalized gene expression values called an “eigen-
gene”. The eigengene is defined as the first principal
component of a module and represents the gene expres-
sion profiles. One eigengene value per sample and per
module was calculated. To investigate if eigengenes
were associated with the external phenotypic traits, we
applied a Markov Chain Monte Carlo method with
phylogenetically correlated random effects, imple-
mented by the software package MCMCglmm [45],
which was run in R 3.3.1 [88]. We first calculated the in-
verse of the matrix of phylogenetic correlation, using an
ultrametric tree computed using Sanderson’s non-
parametric rate smoothing method [89]. The best
smoothing parameter, lambda, was chosen by cross-
validation over a range of possible values [90] and was
set to 0.1. We used non-informative priors correspond-
ing to an inverse-Gamma distribution with shape and
scale parameters equal to 0.01. MCMC burn-in was set
to 150,000, and 500,000 simulations were carried out in
total. Convergence, effective sample size and mixing
were controlled for. The GLMM approach provides a
convenient means of testing the correlation of multiple
traits with module eigengenes by using a single model
relating eigengene expression to caste phenotype and all
species traits (worker sterility, queen number, and inva-
siveness; Input table Additional file 21).

Availability of supporting data
The raw reads of the transcriptome are publicly available in
the DNA Data Bank of Japan under bioproject ID
PRJDB4088, sample accession numbers ID SAMD00
035735-SAMD00035834; Formica aquilonia LH381539-
LH513652, Formica cinerea LH513653-LH652103, Formica
exsecta LH652104-LH973351, Formica fusca LI000001-
LI121692, Formica pratensis LI121693-LI219804, Formica
pressilabris LI219805-LI349988, Formica truncurum
LI349989-LI476587, Lasius neglectus LI476588-LI563515,
Lasius turcicus LI563516-LI670604, Linepithema humile
LI670605-LI795928, Monomorum chinense LI795929-
LI926639, Monomorium pharaonis LJ000001-LJ120855,
Myrmica rubra LJ120856-LJ206166, Myrmica ruginodis
LJ206167-LJ284088, Myrmica sulcinodis LJ284089-
LJ356044, Solenopsis invicta (monogynous form) LJ356045-
LJ530869, Solenopsis invicta (polygynous form) LJ530870-
LJ707314. All transcriptome assemblies can be found on
Fourmidable (http://antgenomes.org/downloads/) [91].
All source codes used for the analysis are provided at

https://github.com/MikheyevLab/Comparative-transcript
omics-of-ants under a MIT license, and a detailed workflow
of the WGCNA analysis is provided in Additional file 22.
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Additional files

Additional file 1: Table S1. Number of queens and workers used for
RNA pooling before library preparation. Three replicates per species per
caste were sequenced using an equal number of samples in each of
them. Number of pooled Formica exsecta samples can be found in [19].
Number of de novo assembled contigs using Trinity before and after
filtering, given with the transcriptomes’s size and number of reads. See
Methods for full description of the filtering steps. Number of caste
differentially expressed genes found in each species using EdgeR
(Queens, number of queen upregulated genes; Workers, number of
worker upregulated genes; Non DE, number of non-differentially
expressed genes; Initial count, number of contigs analysed before cutoff;
Cutoff, cutoff limit from RNA-spike-in analysis). The number of differen-
tially expressed genes between queen and worker varied among species,
from 323 genes (7.4 % of the total number of genes kept for the analysis)
in Formica aquilonia to 5502 genes (72 %) in Linepithema humile (S.
invicta mono, Solenopsis invicta monogynous form; S. invicta poly, Sole-
nopsis invicta polygynous form). No queens were found for Lasius turcicus.
(XLSX 42 kb)

Additional file 2: Table S2. Dataframe used as input for the WGCNA
analysis. Each column represents one sample analyzed and each row
represents the expression level of one OGG across all samples. (XLSX 7837 kb)

Additional file 3: Figure S1. Expression levels of orthologous gene
groups removed (blue) and kept (red) for WGCNA analysis. WGCNA pre-
cleaning step removed data with excessive missing values, which may
impact our ability to detect co-expression patterns. On average, expres-
sion data were not available for 26 samples (out of 100) for the removed
OGGs (2432 OGGs), and only 7 samples for the contigs that were kept for
further analysis (7427 OGGs). (PDF 12 kb)

Additional file 4: Table S3. Results of the MCMC general linear model
(GLM) with 500,000 iterations testing the influence of biological traits on
module eigengenes and accounting for the effects of phylogeny. The
expression of 32 modules was significantly correlated with one of the
two female castes. The modules associated with caste were also found to
be correlated with several important phenotypic traits (worker sterility,
the number of queens per colony and invasiveness). We found that eight
modules showed significant interactions with multiple traits, suggesting
that these modules play a role in biological traits beyond caste
differentiation. (XLSX 3332 kb)

Additional file 5: Table S4. Number of differentially expressed genes
(DEGs) present in each module (Caste, association of the module with
either queen (Queen) or worker traits (Worker), or not associated (NTA);
No. Queen DEGs, number of queen upregulated genes belonging to the
module; No Worker DEGs, number of worker upregulated genes belonging
to the module; No Non DEGs, number of genes non-differentially expressed
belonging to the module; % DEGs, percentage of DEGs compared with the
total number of genes found in the modules). (PDF 30 kb)

Additional file 6: Figure S2. Visualization of two caste-associated modules
(Queen and Worker). The graph represents genes (nodes) connected by edges
showing correlation in gene expression. Central genes (hub genes) which
have multiple connections to other genes and their biological functions are
indicated. Hub genes have high probabilities of being
essential for biological functions [92]. (PDF 252 kb)

Additional file 7: Table S5. List of blast annotations for each OGG using
BLASTp. (XLSX 243 kb)

Additional file 8: Table S6. List of enriched GO term for each module.
The GOstats package for R [85] was used to conduct GO term enrichment
analysis. No enriched GO term could be found for module 3. (XLSX 293 kb)

Additional file 9: Figure S3. Box plots showing the distribution of
connectivity rates for OGGs in non-caste-associated modules (NTA), OGGs in
queen-associated modules (Queen) and OGGs in worker-associated modules
(Worker), and calculated using WGCNA. The median connectivity values are

indicated above the boxplot. OGGs in worker-associated
modules had significantly lower connectivity rates than OGGs in
queen-associated modules (GLM, p = 0.034) and in non-caste-associated
modules (GLM, p= 0.014) * p< 0.05.. (PDF 50 kb)

Additional file 10: Figure S4. Box plots showing the distribution
of expression levels for OGGs in non-caste-associated modules (NTA),
OGGs in queen-associated modules (Queen) and OGGs in worker-
associated modules (Worker), and calculated using RSEM. The median
expression values are indicated above the boxplot. OGGs in worker-
associated modules had significantly higher expression values than
OGGs in queen-associated modules (GLM, p < 0.001) and in non-
caste-associated modules (GLM, p < 0.001) *** p < 0.001. (PDF 59 kb)

Additional file 11: Table S7. Effects of OGG expression levels and
connectivity on dN/dS. OGGs expression levels and connectivity were negatively
correlated with dN/dS. Consequently, we included these terms and their
interactions as predictors in the GLM analysis of evolutionary rate. (XLSX 26.8 kb)

Additional file 12: Table S8. Results of the general linear model (GLM)
with bootstrapping (1000 times) testing the influence of OGGs’ connectivity,
expression levels and phenotypic traits on modules’ rates of evolution
(NTA non-traits-associated modules). * p < 0.05, **p < 0.01, ***p < 0.001.
After accounting for the effects of network topology and expression levels,
dN/dS were not different for OGGs within modules associated with any of
the phenotypes we investigated. Because a single module may be involved
in multiple phenotypes, its constituent genes may experience different
selective pressures in different contexts. (XLSX 39 kb)

Additional file 13: Figure S5. Module preservation in an independent
data set. To validate the existence of a module, it is desirable to show
that it is preserved in an independent test network [86]. The matrix
shows the number of genes assigned to modules by Mikheyev and
Linksvayer [33] in a study of forager behavioral polyethism in
Monomorium pharaonis, and in the present study. If the modules are truly
employed in different contexts, we expected some module overlap
between the two data sets, despite the fact that the Mikheyev and
Linksvayer study only focused on workers. Modules with a significant
overlap in genes (FDR adjusted Fisher's exact test p < 0.05) are
highlighted in shades of red. Both studies use the same WGCNA software
for module definition, but independent data sources. The existence of
significant overlaps suggests that many modules are reproducible in a
variety of contexts. (PDF 60 kb)

Additional file 14: Supplementary material and methods. (PDF 130 kb)

Additional file 15: Figure S6. Multidimensional scaling (MDS) plot
showing transcriptional similarity between the samples. Samples tend to
cluster more by species than by caste, and phylogenetic information is well
characterized, with subfamilies forming clear clusters. (PDF 74 kb)

Additional file 16: Figure S7. Plot of the observed versus expected
log2 ratio of the ERCC expression levels for each species and each library
constructed. The plots showed a positive relationship and revealed that
library construction was successful. (PDF 765 kb)

Additional file 17: Figure S8. The number of caste differentially
expressed genes in common across all seven Formica species and across
seven randomly selected non-Formica species (bootstrap resampling 100
times). This pairwise analysis shows a similar trend for both plot with very
low overlap of differentially expressed genes, even despite the phylogenetic
relationship across Formica species. (PDF 42 kb)

Additional file 18: Figure S9. WGCNA sample clustering based on gene
expression patterns used to detect outliers. One replicate of S. invicta queen
sample was removed from WGCNA and further expression analysis. (PDF 44 kb)

Additional file 19: Figure S10. Scale free topology criterion with a R^2
threshold of 0.9. A soft threshold power of 8 was chosen. (PDF 44 kb)

Additional file 20: Figure S11. Dendogram of OGG gene expression
patterns and module colors. The network analysis of gene expression in
ants identifies distinct modules of co-expressed genes. The dendrogram
is produced by hierarchical clustering of 7427 orthologous gene groups
based on topological overlap. (PDF 324 kb)

Additional file 21: Table S9. Eigengene values calculated for each
sample for each module. Eigengene values summarize the expression
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profile of each module. These values were subsequently used to relate
the modules with external information (Caste, Queen number, Worker
sterility and Invasiveness). (XLSX 75.3 kb)

Additional file 22: Table S10. Detailed workflow of the WGCNA analysis.
(PDF 520 kb)
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