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Genome editing: the end of the beginning @
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Editorial

It has recently become commonplace to editorialize on
the extent to which genome editing has transformed
modern biological research and perhaps, in the future,
biomedicine. Nonetheless, each time the scope of scien-
tific progress and the state of the field is appraised, it is
followed in rapid succession by another wave of seem-
ingly momentous developments. Each of these rounds of
advances pushes at the boundaries of what can be done
to the DNA within cells and organisms, expands the
number of systems that can be used to engineer ge-
nomes, and increases the resolution of our understand-
ing of how these systems work. This is also true for the
articles included in this special issue of Genome Biology
that is focused on genome editing, which provide im-
portant new insights in each of these areas. The clear
takeaway from this collection is that the recent flurry of
progress and excitement around genome editing marks
only the beginning. Even greater challenges lie ahead for
refining and applying these new technologies, interpret-
ing their results, and deciding in what capacity they
should be used.

The most sophisticated biotechnologies continue to
emerge from the seemingly most simplistic organisms.
Similar to the repurposing of green fluorescent protein
from jellyfish for imaging studies or small interfering
RNAs from worms for gene knockdown applications,
the adoption of the CRISPR/Cas9 system from prokary-
otes has enabled genome editing for the broad scientific
community [1]. Despite the massive impact that the
Streptococcus pyogenes CRISPR/Cas9 system has had
directly on genome editing, it has also shone a light into
the depths of alternative prokaryotic gene editing
systems that can be mined for unique and orthogonal
properties [2]. Consequently, several alternative Cas9
systems from other species have been described [3-5],
and now other types of CRISPR systems that are
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independent of Cas9 are being engineered for genome
editing applications [6, 7]. The translation of the oncom-
ing flood of information about CRISPR-Cas systems is
going to depend on technologies for deciphering the
unique properties of each system, including target se-
quence requirements and specificity [8].

In the wake of the identification of these gene editing
systems, it is critical to better understand their funda-
mental mechanisms of action. This will enable the ex-
tension of these tools to more diverse applications and
their optimization for user-defined specifications. The
expanse of mechanistic information that is currently
lacking is both wide and deep. Many knowledge gaps
need to be filled for each system and comparisons of
these properties across systems will facilitate the con-
struction of general rules. We are only now learning
how these molecular machines find and interact with
their DNA target sites [9, 10]. Similarly, the various cel-
lular DNA repair processes that control genome editing
outcomes can be harnessed efficiently and precisely only
if we fully understand the mechanisms by which DNA
breaks are recognized, processed, and restored [11]. A
more complete understanding of the properties of these
systems will similarly advance our capacity to design
optimal tools and achieve the field’s long-term goal of
developing accurate computational predictions of gen-
ome editing outcomes [12, 13].

With a variety of gene editing tools readily available
and a thorough knowledge of their mechanisms of ac-
tion, the diversity of possible applications across science,
biotechnology, and medicine is immense. In science, the
most widespread use of these tools has been for studying
gene function [14, 15], but only a tiny fraction of the po-
tential impact of this approach has been realized thus
far. In biotechnology, there are many ways in which
these tools could address societal challenges and im-
prove human quality of life [16]. Most immediately, the
incorporation of these technologies into agriculture can
help to address the challenges of feeding a rapidly in-
creasing world population. For example, studies in this
issue [17-20] and others [21-24] have demonstrated the
editing of plant genomes to confer resistance to viral
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infection and protection from drought. In medicine, the
ability to manipulate any human gene sequence has tre-
mendous potential to correct inherited diseases or aug-
ment cell therapies that are designed to attack cancers
or regenerate diseased or damaged tissue [25]. However,
there are still challenges to these strategies with regards
to efficiency, delivery, and safety [26]. Many of these are
the same challenges that the gene therapy field has
worked to overcome for decades with significant success,
but others are unique to genome editing.

While genome editing has provided scientists with un-
precedented control over genomic DNA sequences, the
next frontier of genome engineering is establishing simi-
larly precise control over other properties of genome
structure and function [27]. In particular, dozens of epi-
genetic marks have been reported and associated with
various gene expression states. However, relatively little
is understood about the functional roles of these marks
in gene regulation. Genome editing platforms are now
being used to recruit biomolecules that modulate gene
regulation and modify epigenetic marks at specific
chromosomal loci [28—34]. This work will elucidate the
function and heritability of these marks and enable new
strategies for controlling cell phenotype and perturbing
regulatory functions in the genome. Moving forward, the
critical challenges to epigenome editing are developing a
suite of tools for manipulating any epigenetic mark and
understanding the interdependent effects of environ-
ment and epigenetics on gene regulation.

The impact of recent developments in genome editing
on science and biotechnology is immense. However, this
incredible power over our heritable information also
comes with a great responsibility to use it ethically and
safely. This responsibility relates to both how we modify
our own genomes and the genomes of our progeny, and
the genomes of the species that inhabit our planet [35].
Thus, finding the appropriate balance between address-
ing crucial medical and environmental needs while re-
specting the limits of our knowledge will be a critical
challenge for this whole field to consider [36].

The transformation of genome editing technologies in
the last few years has also taught us a tremendous amount
about scientific progress. Arguably, the rapid pace of this
field has been driven as much by the scientists who have
quickly shared results, protocols, and reagents with the
community, as it has been driven by the facile nature of
the new technologies [37]. Sharing pre-publication results,
building websites to provide protocols and design algo-
rithms, and establishing non-profit repositories to distrib-
ute key research reagents are all relatively new concepts to
science that have evolved alongside genome editing tech-
nologies. There is much to be learned about how these
new strategies for making research results available and
transparent could similarly accelerate other fields.
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In summary, the immediate grand challenges and op-
portunities for this field are defining the scope of pos-
sible genome editing tools, determining how they work,
testing how they can be applied, and learning from our
past to proceed wisely and cautiously with these new
and powerful technologies. Each of these challenges dis-
cussed here is covered by the variety of content in this
special issue of Genome Biology. Thus we hope this issue
will provide a perspective for the field as it ventures
out of this beginning phase of the genome editing
revolution.
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