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Abstract

In a recent study, rich clinical assessment and
longitudinal study design are combined with host
gene expression and microbial sequencing analyses
to develop a framework for exploring disease
etiology and outcomes in the context of human
inflammatory disease.
clinical discrepancy suggests a potential role of host genet-
ics in the onset of pouchitis. However, the gut microbiome
Clinical studies exploring the role of the
microbiome in disease outcome
Modulating the microbiome through prebiotics, probio-
tics and antibiotics holds tremendous potential for the
treatment and prevention of human inflammatory dis-
orders, but there is a need for medical research to
explore how alterations in microbial communities are
associated with disease state and host physiology. Few
diseases have an easily explained etiology as outcomes
are affected by a myriad of factors, including host genet-
ics, microbial communities and environmental factors.
Well-designed longitudinal human clinical studies are ne-
cessary to move from ‘correlation’ to ‘causation’. However,
integrating rich clinical metadata with large datasets
characterizing microbial and host attributes is a daunting
task. A recent article by Morgan, Kabakchiev and col-
leagues lays out the analytic framework necessary to
achieve this goal [1].
In their study, a complex set of interwoven diseases

and outcomes is explored simultaneously to tease out
the contributions to clinical outcome of several factors:
underlying disease, host gene expression and mucosal
microbiome composition [1]. Morgan et al. analyzed
samples from ulcerative colitis (UC) and familial aden-
omatous polyposis (FAP) patients who had undergone
ileal pouch-anal anastomosis (IPAA) surgery or so-called
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‘J-pouch’ construction. Genetically, the auto-inflammatory
nature of UC is associated with polymorphisms in 160
genes, whereas FAP displays a more classic Mendelian
inheritance linked to mutations in a single gene [2].
Outcomes of IPAA surgery vary widely between these
conditions - approximately half of UC patients experience
an episode of pouchitis (inflammation of the ileal pouch),
whereas this outcome is rare in FAP patients [3]. This

also likely plays a role in disease pathogenesis as pouchitis
has been successfully treated with antibiotics and might
be prevented through the use of probiotics [3]. With
known genetic and microbial influences, pouchitis is an
ideal model for exploring the effects of host-microbe in-
teractions on clinical outcome.

Data dimension reduction to achieve maximum
power from clinical studies
Previous studies have looked at microbial communities
and host transcriptomes in patients who have undergone
IPAA; however, thus far none has studied them simul-
taneously to explore host-microbe interactions. In their
study, Morgan and colleagues measured host gene
expression and microbial community composition in
paired biopsies (pouch/afferent limb) from 265 patients
undergoing IPAA because of UC or FAP [1]. They used
microarrays and 16S ribosomal RNA gene sequencing to
interrogate 19,908 host transcripts and 6,999 observed
operational taxonomic units (OTUs; a proxy for bacte-
rial species). Ribosomal sequences with >97% sequence
identity were grouped together as an OTU.
Identifying associations between datasets of this size

requires an unreasonably large sample size or the com-
pression of many variables into a few. The required size
of the population or the degree of compression can be
calculated with power equations. In their study, Morgan
et al. elegantly explain how, given their sample size and
the desire to retain 90% power and an alpha equal to 0.05,
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thousands of variables must be reduced to approximately
100 transcripts and 100 bacterial clades. From these 104

pairwise tests, statistically significant conclusions between
the datasets could be drawn.
To achieve the data compression required by the

power equation, Morgan and colleagues employed va-
rious dimension-reduction techniques [1]. The issue of
data reduction is not new to the genomic community,
especially as large datasets become the norm. Reduction
analysis methods are common in expression quantitative
trait loci (eQTL) and microarray studies [4,5]. By com-
bining multiple SNPs into haplotypes, the HapMap pro-
ject was able to reduce the overall number of tags and
increase the power of their analyses [6].
The microbial OTUs were first filtered for abundance

and then subjected to unsupervised and supervised clus-
ter analyses. For unsupervised dimensionality reduction,
OTUs were transformed into nine clade principal com-
ponents (cPCs), which explained 50% of the observed
variance [7]. For supervised reduction, filtered OTUs
were hierarchically clustered, and the OTU with the
lowest mean abundance was chosen to represent the
cluster. Transcripts were also subjected to supervised
and unsupervised dimension reduction. In the super-
vised approach, transcripts were chosen based on their
previous implications in inflammatory bowel disease
(IBD), pouchitis or host-microbe interactions and were
then clustered based on expression profiles to yield 75
gene medoids - gene(s) with similar expression patterns.
For unsupervised reduction, transcripts with stable expres-
sion across all subjects were discarded, and the remaining
transcripts were compressed into nine gene principle com-
ponents (gPCs). In the end, thousands of host transcripts
and OTUs were reduced down to 138 features - a number
well within the limit imposed by the power equation.

Drawing meaningful connections between host
expression, microbial composition and clinical
metadata
In addition to transcriptome and microbiome data,
extensive metadata, including antibiotic usage, score of
inflammation and post-surgical outcomes, were collected
for each patient [1]. To uncover connections among
these different types of data, Morgan and colleagues
used various linear modeling techniques. With these
methods, they validated previous findings that host tran-
script variation is best explained by biopsy location [8],
and microbial community variation is best explained by
an individual's antibiotic usage. When they controlled
for antibiotic usage, very few microbial taxa could be
associated with inflammation or clinical outcome, with
the exception of Escherichia and Actinobacteria, which
are positively and negatively associated with inflam-
mation, respectively.
The novelty of this research is the incredibly rich, well-
performed clinical study and the depth of analyses focused
on host-microbe interactions. Such comparisons would
not have been possible without the supervised and un-
supervised data reduction methods. Using multivariant
linear modeling to control for antibiotics, inflammation
and outcome, Morgan and colleagues measured gene-
clade associations [1]. Surprisingly, transcript-microbe in-
teractions were modest - only two gPCs associated with
four cPCs. Loadings of the gPCs corresponded to proteins
in the complement cascade and interleukin-12 pathway,
whereas several clades that featured in the four cPCs
could be linked back to antibiotic usage, including in-
creased Enterobacteriaceae and decreased Bacteroides and
Firmicutes. Overall, this modest number of interactions
indicates that microbial composition is more likely shaped
by early-life colonization or diet than by local gene ex-
pression [9].
Next, Morgan and colleagues applied the gene-medoids

and representative clades from supervised clustering to
linear discriminant analysis (LDA) [1]. They wanted to
evaluate whether various combinations of genes and mi-
crobes could be used as markers to discriminate between
different clinical outcomes. After restricting the analysis to
samples without antibiotic usage, LDA analysis was able
to discriminate between FAP patients and those with
Crohn’s disease-like inflammation but not between other
outcomes, such as acute or no pouchitis.
The dominant effect of antibiotic usage was a common

theme throughout this paper. Antibiotics were the main
driver of microbial community composition and highly
predictive of the chronic pouchitis outcome, which is
unsurprising given that antibiotics are often prescribed
to treat pouchitis [3]. Antibiotics altered microbial com-
positions so strongly that the effects of other factors
such as inflammation, host genetics and clinical outcome
were often overshadowed, and LDA was unable to iden-
tify any microbes or genes predictive of outcome.

Utilizing clinical data to generate testable
hypotheses
A common goal of clinical studies is to better stratify
and predict disease outcomes. In this particular study,
that goal was not realized owing to complications im-
posed by the patients’ antibiotic usage history and lack
of multiple time-points - factors that limit many clinical
studies. For human treatment studies, many factors con-
founding analysis cannot be controlled without placing
an undue burden on the patient - that is, asking patients
to provide frequent biopsies or to refrain from taking
antibiotics. Thus, when available, animal models of a
disease can be useful for well-controlled explorations of
hypotheses generated from clinical studies. A recent
paper by Buffie and colleagues elegantly demonstrated
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how hypotheses from Clostridium difficile colonization-
resistance studies in humans could be investigated with
a mouse model [10]. This human-mouse study in-
tegration led to the discovery of single bacterial specie(s)
that confer colonization resistance to the pathogen C.
difficile. Ideally, these results will soon be brought back
to humans and tested in a controlled clinical setting.
Clinical studies are essential to generate hypotheses
about what should be modeled and tested in animals
and then to validate concepts derived from mouse stu-
dies in an iterative fashion.

Concluding remarks: advantages and pitfalls of
growing data sets
Morgan and colleagues used 16S amplicon sequencing
and microarrays to infer host-microbe interactions [1]. In
the future, microbial communities will be described with
whole-genome shotgun sequencing metagenomics, and
transcriptomes will be captured with deeper RNA-Seq.
These new technologies will generate data at a greater
resolution than ever before, while simultaneously generat-
ing new analysis conundrums. Microbial and clinical ex-
perts will need to combine forces with computational
biologists and statisticians to develop methods for ana-
lyzing these very large datasets in order to be able to
visualize both the ‘forest’ and the ‘trees’. When designing
clinical studies characterized by large-scale sequencing
technologies, researchers will need to maximize the large
cohorts necessary for discovery-driven research and smaller
cohorts sufficient to explore defined clinical questions.
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