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Abstract

Epigenomic data from ENCODE can be used to associate specific combinations of chromatin marks with regulatory
elements in the human genome. Hidden Markov models and the expectation-maximization (EM) algorithm are often
used to analyze epigenomic data. However, the EM algorithm can have overfitting problems in data sets where the
chromatin states show high class-imbalance and it is often slow to converge. Here we use spectral learning instead of
EM and find that our software Spectacle overcame these problems. Furthermore, Spectacle is able to find enhancer
subtypes not found by ChromHMM but strongly enriched in GWAS SNPs. Spectacle is available at https://github.
com/jiminsong/Spectacle.

Background
Identifying regulatory elements in the human genome
is a challenging problem that is important for under-
standing many fundamental aspects of biology, including
the molecular mechanisms of disease, development and
evolution. Cell-type-specific gene regulation clearly can-
not be explained by genome sequence alone because the
genome is essentially identical in almost all cell types.
The epigenome refers to the complete set of chromatin
modifications across the entire genome, including DNA
methylation marks and post-translational histone modifi-
cations, and it has received great interest in recent years
for its potential to elucidate gene regulation. It has been
called the ‘second dimension of the genome’ [1], and we
use the term here as commonly done with no requirement
for the epigenetic marks to be heritable.
Epigenetic marks are known to be correlated with

fundamental biological processes such as mRNA tran-
scription, splicing, DNA replication and DNA damage
response (reviewed in [1-3]). Although it is debated
whether epigenetic marks are mechanistically required
for these processes, genome-wide studies have nonethe-
less been highly successful in using epigenetic marks to
identify important genomic features that were often pre-
viously very difficult to find by other methods, includ-
ing enhancers, promoters, transcribed regions, repressed
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regions of the genome and non-coding RNAs (e.g. [4,5]).
There is also the potential to use epigenome maps to
identify subclasses of functional elements, such as pro-
moters, that are active in a cell type versus those that
are poised for activation at a later time in development
[6]. Importantly, functional elements identified by epige-
netic marks have been shown to overlap significantly with
disease-associated SNPs found by genome-wide associa-
tion studies (GWASs) [7,8]. Since approximately 90% of
GWAS SNPs are thought to be located in non-coding
regions [9], such results give hope that one might be able
to fine-map the causal disease variants of many GWASs
or other disease gene mapping studies using epigenome
maps.
Recently, the ENCODE project [4] produced a wealth

of epigenomic data from many different human cell types
using a combination of stringent biochemical assays and
high-throughput sequencing technologies. In addition,
the International Human Epigenome Consortium [10]
also aims to produce reference maps of 1000 human
epigenomes and it includes several major projects, such
as BLUEPRINT and the Roadmap Epigenomics Project
[11,12], which is producing epigenome maps from mul-
tiple primary human tissues. Finally, individual research
labs are also producing epigenome maps for related
species such as the mouse and pig [13], and for different
human individuals [14]. As the number of human epige-
nomic data sets grows, the need for fast and robust com-
putational methods for analyzing these data will increase.
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One successful computational approach for analyzing
epigenomic data is to build a unified statistical model
to decipher the patterns of multiple chromatin modifica-
tions in a cell type, rather than analyzing each chromatin
modification individually. Several computational meth-
ods have been developed to annotate chromatin states
from epigenomic data, not only in the human genome
but also in the Drosophila, mouse, yeast and Arabidopsis
thaliana genomes [15-27]. Among these methods, hid-
den Markov models (HMMs) have been commonly used
as the underlying probabilistic model of the sequence of
chromatin states along the genome. Currently, a detailed
understanding of the specific chromatin modifications
associated with different classes of regulatory elements,
such as enhancers and promoters, is lacking, so many
researchers have taken the approach of performing unsu-
pervised estimation of the HMMparameters (i.e. inferring
the relevant subclasses of chromatin states directly from
the data without access to existing biological examples
of such subclasses). To perform unsupervised learning,
the expectation-maximization (EM) algorithm has been
the standard algorithm used in practice for a long time
[28,29].
The EM algorithm is a maximum likelihood approach

that iteratively converges to a local optimum in the likeli-
hood. However, it suffers from several well-known issues.
It is often slow to converge since the likelihood is not
convex in general and EM is a first-order optimiza-
tion method, and deciding when to stop the iterations
is somewhat arbitrary. EM is not guaranteed to find a
global optimum, so often multiple parameter initializa-
tions are needed to achieve good practical performance
[30]. Finally, the maximum likelihood approach is known
to be prone to overfitting [31] and to perform poorly on
classification problems that suffer from class imbalance
[32]. Importantly, the observation about class imbalance
implies that for a data set where the majority of the
genome is in the background null chromatin state without
any chromatin immunoprecipitation sequencing (ChIP-
seq) peaks for chromatin marks, the EM algorithm will
tend to devote more parameters to modeling the large
background class, at the expense of modeling other types
of biologically important functional classes. All of these
issues lower the biological significance of the solutions
obtained from the algorithm.
To address all of these issues, here we investigated the

feasibility of using spectral learning, an approach that
is currently being developed in the theoretical machine
learning community (e.g. [33,34]) to perform chromatin
state annotation instead of the EM algorithm. Spectral
learning fits in the overall framework of the method of
moments or the plug-in estimator approach, which pre-
dates the maximum likelihood approach [35,36]. Broadly
speaking, method of moments estimators are different by

nature from maximum likelihood estimators. Instead of
attempting to find the maximum likelihood solution, in
the method of moments one expresses various unobserv-
able moments of the model as functions of the parame-
ters, sets these moments equal to the sample moments
estimated from the data and solves these equations to esti-
mate the parameters. Method of moments estimators are
often simpler, faster and more efficient to compute. They
also often do not suffer from local optima issues, so they
do not depend on the parameter initialization.
On the other hand, maximum likelihood and method

of moments estimators are complementary approaches
and there are important advantages to the maximum like-
lihood approach. Maximum likelihood approaches are
generally more sample efficient (i.e. they do not require
as much data to produce the same quality of solution).
Thus a common way to combine the advantages of the
two methods is to use the method of moments estimator
as an initializer and to run a few iterations of local opti-
mization of the likelihood (e.g. using the EM algorithm)
[37]. We hypothesized that the human genome might be
large enough to provide a sufficient number of samples to
compute a method of moments estimator accurately.
Thus, in this work, our main technical contribution is

to develop a practical implementation of spectral learning
for HMMs for the specific biological application of anno-
tating chromatin states in the human genome. Although
there are a few practical implementations of spectral
learning in the natural language processing and computer
vision communities, as well as a few previous imple-
mentations for specific biological problems, we believe
Spectacle is one of the first practical implementations for
a commonly studied biological problem. We stress that
many technical issues remain to be studied in spectral
learning, as described in this paper.
We found that our method, Spectacle (Spectral Learn-

ing for Annotating Chromatin Labels and Epigenomes),
was much faster than a previous state-of-the-art method,
ChromHMM [15], for commonly used numbers of chro-
matin states and epigenetic marks in a number of
ENCODE cell types.We believe this speed-upwill become
more important as the number of new epigenomic data
sets increases. In addition, we observed empirically that
Spectacle was more robust to the class imbalance problem
and produced fewer null chromatin states and more func-
tional chromatin states than the EM algorithm.We believe
this is a novel observation for spectral learning, which
may be significant for future algorithmic work in spectral
learning. Most importantly, we demonstrate the biolog-
ical significance of our chromatin state annotations by
showing a higher enrichment for disease-associated SNPs
in the additional functional chromatin states found by
Spectacle compared to ChromHMM. We analyzed selec-
tive constraints on chromatin states, which suggests that
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epigenome-based enhancer predictions are more infor-
mative for fine-mapping disease-associated SNPs than
evolutionary conservation. Finally the faster run time of
our program enabled us to compare epigenomic data sets
across cell types by stacking the chromatin mark data
from different cell types. This analysis suggested that
most enhancer states are cell-type specific and that this
set of enhancers is important for fine-mapping disease-
associated SNPs. We implemented Spectacle in Java and
Python by modifying the ChromHMM code, so it should
be easily portable to most desktops and the source code is
freely available online.

Results
We use HMMs to represent the chromatin states as hid-
den states and all possible combinations of epigenetic
marks as observations. We compare our software, Specta-
cle (see the details in the Materials and methods), which
implements a spectral learning algorithm for parameter
estimation, to a previous state-of-the-art method using
the EM algorithm, ChromHMM.

Spectral learning is much faster than
expectation-maximization for common numbers of
chromatin states and epigenetic marks
In our tests, Spectacle had significantly faster training
times than ChromHMM (23.9 to 124.1 times faster)
for all tested numbers of chromatin states (Figure 1).
Indeed, our implementation of spectral learning takes
much less compute time than just two iterations of the EM
algorithm – much less than required for convergence. For
most biological analyses, the number of chromatin states
is usually set lower than 100 and for biological inter-
pretability it is often set to around 20 states (e.g. [22]).
Thus for the number of chromatin states most relevant

Figure 1 Training time of Spectacle vs ChromHMM for the
GM12878 cell line.

to biological data, Spectacle was 97 times (37 vs 3599.5 s)
faster for 15 states and 110 times (71.8 vs 7915.3 s) faster
for 20 states than ChromHMM. The faster training times
are important in allowing individual users to annotate the
large numbers of epigenomic maps being produced for
different species, cell types, individuals and disease states,
and we expect our method to be even more valuable in
the future as the number of such data sets increases with
decreasing sequencing costs.
All of these reported results used eight chromatinmarks

from three ENCODE Tier 1 cell types that have been
used in other method development studies as well. This
is also roughly the number of epigenetic marks used in
other studies from individual labs. It is important to note
that our method considers all possible combinations of
epigenetic marks, unlike other methods that assume inde-
pendence between the epigenetic marks, and therefore
the theoretical space and time complexity of our method
grows exponentially with the number of epigenetic marks.
We consider this a biologically significant feature of our
approach because given the current knowledge of all the
possible chromatin marks and their interactions, we feel
it is important to be open to the possibility of interactions
between any set of epigeneticmarks. Thus we need to con-
sider all possible combinations of epigenetic marks, which
makes the (theoretical) exponential complexity unavoid-
able.
On the other hand, it is also important in practice

that the exponential dependence is only theoretical and
in fact an analysis of 16 chromatin marks from a public
human epigenomics data set shows that the actual num-
ber of combinations of epigenetic marks that appear in
real human epigenomics data is much smaller and scales
as only a low-order polynomial with exponent in the range
1 to 2 (Additional file 1: Figures S1, S2 and S3). We found
that although there are theoretically 216 = 65, 536 pos-
sible combinations of epigenetic marks, in actual practice
only 9,954 combinations (approximately 15%) of the chro-
matin marks appear in the genome. Only 409 combina-
tions (approximately 0.6%) of epigenetic marks accounted
for more than 99% of the genome. We downloaded nar-
row peak calls for 29 chromatin marks in the human
embryonic stem cell H9 from the Roadmap Epigenomics
Project [12]. In theory, there can be up to 229 combi-
nations of chromatin marks, but we observed that there
were only 186,814 combinations appearing in the genome.
After eliminating singleton combinations that are likely
due to noise, only 56,750 combinations appeared at least
twice in the genome. This phenomenon of data sparsity
is both very common in modern statistical research and
entirely consistent with our biological intuition that not
all possible combinations of epigenetic marks are likely
to be biologically significant for directing cellular pro-
cesses. Having sparse input data allows us to use sparse
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Figure 2 Spectacle results for cell line GM12878 for 20 chromatin states. (Left) Emission matrix and state annotation (values between 0 and 1
are colored from white to black). (Middle) Number of genomic segments and distance from TSS of the segments for each state. The distribution
bars are shown only when at least 10% of the segments are within 5 kb from the TSS (the percentage of the segments within 5 kb from the TSS is
shown by the color of the distribution bars, i.e., the more segments within 5 kb from the TSS, the bluer the distribution bars are). (Right) Enrichment
of validated biological features (enrichment is colored red and depletion is colored blue). CpGI, CpG island; DRM, gene-distal regulatory module;
Enh, strong enhancer; EnhP, poised enhancer; EnhW, weak enhancer; kb, kilobase; Num, number; Pol2, RNA polymerase II binding; PRM,
promoter-proximal regulatory module; Prom, strong promoter; PromF, promoter flanking; PromP, poised promoter; PromW, weak promoter; Repr,
repressed region; TSS, transcription start site; Txn, transcribed region.

linear algebra routines in our method. Indeed our com-
putational experiments with our Python implementation
using sparse singular value decomposition (SVD) meth-
ods based on power iteration show that the method is
very efficient in practice on the largest data sets in the
Roadmap Epigenomics Project (Additional file 1).

Spectral learning appears to be more robust to class
imbalance than expectation-maximization
We examined the chromatin states inferred by Specta-
cle and ChromHMM for the GM12878, H1-hESC and
K562 cell types, setting the number of chromatin states to
20. We observed that the EM algorithm always assigned
more hidden states to modeling the background null chro-
matin state (Figures 2 and 3, Additional file 1: Figures S14
to S17). Figures 2 and 3 show an example of this phe-
nomenon where states 1, 15 and 20 were all assigned the
null state (i.e. all epigenetic marks with close to no signal)
in the EM solution (Figure 3 left panel) whereas only state
1 was assigned to be the null state in the spectral learn-
ing solution (Figure 2 left panel). ChromHMM used the

three chromatin states to cover most null segments in the
genome (approximately 88%) whereas Spectacle covered
about the same number of null segments (approximately
86%) with only one chromatin state.
We believe that the difference between the two

approaches is due to their robustness for data with a high
class imbalance. We found that using the Poisson bina-
rization method [7] for the ChIP-seq data, the fraction
of the genome in the null state was approximately 90%
in all ten ENCODE cell types we examined (Table 1). It
is well known that for data with a class imbalance, the
maximum likelihood criterion will tend to devote more
parameters to modeling the large background class (e.g.
[32]). This in turn causes lower quality modeling of other
biologically more interesting states, since there are fewer
parameters devoted to them. For instance, state 20 is
unique to the Spectacle solution and does not appear in
the ChromHMM solution, yet has the hallmarks of an
active enhancer (Figure 2, left panel). Similarly, for another
cell type K562, Spectacle found a strong enhancer state
that does not appear in the ChromHMM solution (state
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Figure 3 ChromHMM results for cell line GM12878 for 20 chromatin states. Shown are the emission matrix, state annotation and enrichment
of biological features. Refer to caption of Figure 2. Art, artificial; CpGI, CpG island; DRM, gene-distal regulatory module; Enh, strong enhancer; EnhP,
poised enhancer; EnhW, weak enhancer; kb, kilobase; Num, number; Pol2, RNA polymerase II binding; PRM, promoter-proximal regulatory module;
Prom, strong promoter; PromF, promoter flanking; PromP, poised promoter; PromW, weak promoter; Repr, repressed region; TSS, transcription start
site; Txn, transcribed region.

20 in Additional file 1: Figure S16, left panel). We have not
yet analyzed the theoretical robustness of spectral learn-
ing to class imbalance and leave it as a theoretical question
for future work but speculate that it may come from
the orthogonality condition in the SVD computation; the
first singular vector accounts for the null state and the

Table 1 Fraction of null segments for ten ENCODE cell
types

Binarization Cell type

GM12878 H1-hESC HeLa-S3* HepG2*

Scripture [38] 0.5 0.59 0.47 0.52

Poisson binarization [7] 0.92 0.92 0.89 0.89

HMEC HSMM HUVEC K562

Scripture [38] 0.48 0.49 0.55 0.56

Poisson binarization [7] 0.90 0.89 0.89 0.91

NHEK NHLF

Scripture [38] 0.57 0.51

Poisson binarization [7] 0.91 0.91

Cell types with * have only seven available epigenetic marks for the Poisson
binarization data set. All other cell types have eight epigenetic marks for both
binarization data sets.

other vectors that account for other chromatin states are
constrained to be orthogonal to it. Instead here we per-
formed extensive empirical testing of spectral learning
and EM/maximum likelihood on a more balanced epige-
nomics data set (Additional file 1: Figures S4 to S13, Tables
S1, S2 and S3). This data set was more balanced in the
sense that the fraction of the genome in the null state was
approximately 52% (Table 1). For this data set, we found
that maximum likelihood was indeed a good criterion that
corresponds to better performance for predicting biologi-
cal features, and we show that spectral learning was useful
as an initializer to a local optimizationmethod for the like-
lihood, a common use of method of moments estimators
in statistics.
We note that simple approaches to addressing class

imbalance, such as subsampling from the dominant class,
which are used in simple classification problems (e.g.
using naive Bayes classifiers), are not directly applicable
in the HMM context because the length distribution of
the chromatin states is important for the model and can-
not simply be changed by sampling. Finally, we note that
for the Poisson binarization data, when we used the spec-
tral learning parameters to initialize the EM algorithm
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and ran it to convergence, in all cases the parameters con-
verged to those found by ChromHMM. This indicates that
the difference between the chromatin state annotations of
ChromHMM and Spectacle are not due to the initializa-
tion method used in ChromHMM but rather a difference
between the spectral learning and maximum likelihood
approaches.

Comparison of chromatin state annotations
Next we studied the biological significance of the chro-
matin state annotations produced by the two methods. To
do so, we did an in-depth study for three ENCODE Tier
1 cell types: GM12878, H1-hESC and K562. We ran both
Spectacle and ChromHMM using eight epigenetic marks
for 20 states and annotated the predicted chromatin states
from the eight epigenetic marks as promoters (Prom),
enhancers (Enh), transcribed regions (Txn) and repressed
regions (Repr).We then validated the predicted chromatin
states using external biological data sets.

Promoters
In the literature, promoters are characterized by high
H3K4me3/H3K4me2 and low H3K4me1, while H3K9ac
is associated with promoter activity (reviewed in [39,40]).
Promoter states are categorized into three states depend-
ing on enrichment of H3K4me3/H3K4me2 and H3K9ac,
or H3K36me (signal for flanking regions): Prom (strong
promoter), PromW (weak promoter) and PromF (pro-
moter flanking). For the GM12878, H1-hESC and K562
ENCODE Tier 1 cell types, we found 5, 3 and 5 Spectacle
promoter states and 5, 3 and 4 ChromHMM promoter
states, respectively. These segments were associated with
active transcription start sites (TSSs) (Table 2). Also,
we found that these were highly enriched with rele-
vant biological features including RNA polymerase II
binding (Pol2), promoter-proximal regulatory modules
(PRMs), CpG islands (CpGIs), DNase 1 hypersensitive
sites (DNase) and exonic regions (exons), and tend to be
close to active TSSs (Figures 2 and 3, Additional file 1:
Figures S14 to S17). These results confirmed the accu-
racy of our promoter annotations with both Spectacle and
ChromHMM.
Next we examined the differences between the

ChromHMM and Spectacle annotations. We found that
Spectacle predicted an interesting pattern of epigenetic

Table 2 Precision and recall for predicting active
transcription start sites

Cell line Data set Spectacle ChromHMM

GM12878 TSS 0.045, 0.937 0.044, 0.930

H1-hESC TSS 0.090, 0.866 0.082, 0.895

K562 TSS 0.059, 0.917 0.065, 0.922

TSS, transcription start site.

marks, which did not appear in the ChromHMM solution.
Specifically, Spectacle state 19 for GM12878 (Figure 2)
had a pattern of high H3K4me3, high H3K9ac and low
H3K27ac, and was highly enriched with active TSSs
(log2 of fold enrichment: 5.7). ChromHMM state 12
(Figure 3) had a similar pattern but slightly lower H3K9ac,
and was less enriched with active TSSs (log2 of fold
enrichment: 2.6).
There was 1, 1 and 0 poised promoter state (PromP;

defined by high enrichment of H3K27me3) in Spectacle,
and 1, 1 and 0 poised promoter state in ChromHMM
for GM12878, H1-hESC and K562, respectively. It has
been shown that these bivalent states are mostly found
in embryonic stem cells [6] but are found in other cell
types as well and are associated with genes involved in
development in other cell types [3,41]. In fact, these states
are enriched with gene ontology (GO) terms related to
development and differentiation according to the GREAT
software [42] (see Materials and methods for detailed
parameter settings). For GM12878, Spectacle chromatin
state 18 was associated with several development and
differentiation-related GO terms such as ‘digestive tract
mesoderm development’ (q < 4 × 10−7), whereas
ChromHMM chromatin state 19 was not associated with
any such GO terms. For H1-hESC, both Spectacle and
ChromHMMpoised promoter states were associated with
development and differentiation-related GO terms, e.g.
Spectacle state 18: ‘myeloid progenitor cell differentiation’
(q < 2×10−4) and ChromHMM state 13: ‘central nervous
system neuron differentiation’ (q < 5 × 10−50).
Taken together, both methods effectively identified

active and inactive promoter states. However, Specta-
cle found certain biologically relevant chromatin states
not found by ChromHMM and we believe this is because
maximum likelihood methods tend to use more parame-
ters tomodel the null chromatin state, whichmakes up the
vast majority of the genome.

Enhancers
Enhancers are characterized in the literature by high
H3K4me1/H3K4me2 and low H3K4me3, while H3K27ac
is associated with enhancer activity (reviewed in [39,40]).
Enhancer states are categorized into three states depend-
ing on enrichment of H3K4me1/H3K4me2 and H3K27ac:
Enh (strong enhancer), EnhW (weak enhancer) and EnhP
(poised enhancer; with high H3K27me3). There were 9,
9 and 10 enhancer states in Spectacle and 6, 7 and 8
enhancer states in ChromHMM for GM12878, H1-hESC
and K562, respectively. These enhancers were associated
with distal P300 peaks, gene-distal regulatory modules
(DRMs) and VISTA enhancers (Materials andmethods) as
well (Table 3). They were also highly enriched with Pol2,
distal P300, DRM and DNase signals (Figures 2 and 3,
Additional file 1: Figures S14 to S17).



Song and Chen Genome Biology  (2015) 16:33 Page 7 of 18

Table 3 Precision and recall for predicting distal P300,
gene-distal regulatory modules and VISTA enhancers

Cell type Data set Spectacle ChromHMM

GM12878 Distal P300 0.129, 0.421 0.116, 0.407

DRM [43] 0.190, 0.375 0.174, 0.369

VISTA 0.001, 0.048 0.001, 0.053

H1-hESC Distal P300 0.102, 0.477 0.144, 0.342

DRM [43] 0.115, 0.468 0.160, 0.332

VISTA 0.004, 0.273 0.005, 0.149

K562 Distal P300 0.060, 0.204 0.057, 0.196

DRM [43] 0.039, 0.178 0.039, 0.181

VISTA 0.002, 0.133 0.002, 0.129

Note that VISTA enhancers are not specific to these cell types.
DRM, gene-distal regulatory module.

Importantly, we found that Spectacle could subclassify
active enhancers better than ChromHMM. For instance,
for GM12878, most segments in ChromHMM state 9
were labeled with either state 9 or state 20 in Specta-
cle according to H3K9ac activity.
For H1-hESC, some enhancers were poised enhancers

with high H3K27me3. There were five Spectacle and one
ChromHMM poised enhancer states. Poised enhancer
states were also highly enriched with Pol2, distal P300,
DRM and DNase signals, similar to active enhancer states
(Additional file 1: Figures S14 and S15) [44]. All poised
enhancer states found by the two methods were associ-
ated with several development and differentiation related
GO terms, e.g. Spectacle state 12: ‘sensory organ devel-
opment’ (q < 1 × 10−66), Spectacle state 13: ‘enteric
nervous system development’ (q < 4 × 10−6), Specta-
cle state 16: ‘positive regulation of neuron differentiation’
(q < 6 × 10−3), Spectacle state 19: ‘cell differentiation
in spinal cord’ (q < 3 × 10−19), Spectacle state 20: ‘tis-
sue development’ (q < 2 × 10−23) and ChromHMM state
12: ‘skeletal system development’ (q < 1 × 10−70). We
found that Spectacle subclassified enhancers depending
on their distance from the TSS. Spectacle states 12, 13 and
19 were closer to the TSS but Spectacle states 16 and 20
were farther from the TSS (Additional file 1: Figures S14
and S15).
Taken together, Spectacle found more biologically rele-

vant subclasses of enhancers than ChromHMM. We will
discuss the biological significance of these enhancer sub-
types further in the next section with regards to GWAS
SNPs.

Transcribed regions
We define transcribed regions or gene bodies based on
enrichment with H3K36me3. There were 2, 2 and 1

transcribed region states (Txn) in Spectacle and 2, 1 and
2 transcribed region states in ChromHMM for GM12878,
H1-hESC and K562, respectively. We found that all these
states were highly enriched with annotated exons.

Repressive and quiescent regions
The majority of the genome is considered to be in a
repressed state (Repr) since there is very low enrich-
ment of histone marks. There are a few segments
(usually <0.03% of the genome) that have high enrich-
ment of almost all epigenetic marks. These segments
are considered artificial (Art) and are also treated as
repressed regions. There were 3, 5 and 4 repressed states
in Spectacle and 6, 8 and 6 null (Repr and Art) states in
ChromHMM for GM12878, H1-hESC and K562, respec-
tively. Thus ChromHMMdevoted more of the parameters
to modeling the repressed state than Spectacle, consistent
with our observations about class imbalance.
Taken together, our chromatin annotation shows that

ChromHMM devoted more states to modeling the
background repressed chromatin state whereas Specta-
cle devoted more states to modeling other states, which
we have argued are biologically significant.

Genome-wide association study SNPs are enriched in
strong enhancer states
Next we investigated if any of the chromatin enhancer
states discovered by Spectacle were significantly enriched
in disease-associated SNPs discovered in GWASs. To
do so, we downloaded SNPs from the NHGRI GWAS
catalogue [9]. Since approximately 90% of GWAS SNPs
are found in non-coding regions of the genome, epige-
nomic data has been suggested as a way to give func-
tional interpretation for non-coding GWAS SNPs [45-47].
Chromatin state annotation tools can be used to anno-
tate strong enhancers in the genome and predict possible
functions for the disease-causing SNPs as disrupting reg-
ulation of specific genes [7,22]. After excluding SNPs in
unmapped chromosomes or chrY and phenotypes (dis-
eases or traits) with less than ten SNPs, our final data set
consisted of 10,604 non-coding SNPs associated with 360
phenotypes.
Overall, we found that the non-coding SNPs were highly

enriched in the strong enhancer states predicted by either
Spectacle or ChromHMM (χ2 test: P = 0 for all three cell
lines). The enrichment in Spectacle strong enhancer states
was similar to but slightly higher than in ChromHMM
strong enhancer states (log2 of fold enrichment for Spec-
tacle vs ChromHMM: GM12878: 1.35 vs 1.32; H1-hESC:
1.56 vs 1.41; K562: 1.17 vs 1.11; all P > 0.05).
Next we computed the fold enrichment of the SNPs

for each phenotype in each chromatin state separately,
since the common use of chromatin state annotations
is to consider one GWAS data set at a time. In total,
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we found 102 phenotypes whose SNPs were most highly
enriched in one of the strong enhancer states predicted
by either Spectacle or ChromHMM for GM12878. Of
these states, Spectacle chromatin state 20, which did not
appear in ChromHMM, had the largest number of phe-
notypes and largest total number of GWAS SNPs, which
were most highly enriched in it (Table 4). This result sug-
gests that spectral learning may be able to produce more
biologically meaningful chromatin state annotations for
mapping GWAS SNPs. Methodologically, this is presum-
ably because the enhancer subclasses account for only a
small fraction of the genome, and therefore are not influ-
ential in the maximum likelihood solution, but distinctive
in terms of their pattern of chromatin marks, and there-
fore are found by the spectral learning algorithm. More
importantly, it suggests that we may have found a bio-
logically meaningful enhancer subtype using our spectral
learning approach.
Further, we looked into phenotypes related to autoim-

mune diseases. GM12878 is infected with Epstein–Barr
virus and it has been shown that infection with the virus is
related to the risk of certain autoimmune diseases [48,49].
We found that 16 out of the 21 autoimmune disease-
related phenotypes were most highly enriched in strong
enhancers predicted by either Spectacle or ChromHMM,
and in particular all of the 16 phenotypes in strong
enhancer states in Spectacle but not in ChromHMM.
Notably, we found that chromatin state 20 in Specta-
cle (Figure 2) had the highest enrichment of GWAS
SNPs for ten out of the sixteen autoimmune diseases
including all three phenotypes that were shown to be
enriched in strong enhancer states in a previous work
[7] (Figure 4 for the three phenotypes studied previously,
Additional file 1: Figure S18 for all 16 phenotypes). This

Table 4 Most highly enriched phenotypes for GM12878

Method State Number of Number of Number of
phenotypes associated SNPs autoimmune

phenotypes

Spectacle 7 16 530 0

Spectacle 8 20 732 6

Spectacle 9 12 290 0

Spectacle 17 6 276 0

Spectacle 20 29 1284 10

ChromHMM 7 5 142 0

ChromHMM 8 2 35 0

ChromHMM 9 2 28 0

ChromHMM 17 10 370 0

Number of phenotypes whose SNPs were most highly enriched in a strong
enhancer state, number of all non-coding SNPs associated with the phenotypes,
and number of autoimmune disease-related phenotypes among the most
highly enriched phenotypes in GM12878.

suggests that this chromatin state, which was found only
by Spectacle, might be particularly interesting for map-
ping causing variants of disease phenotypes in this cell
type.
The genomic segments labeled with Spectacle chro-

matin state 20 were mostly found in ChromHMM chro-
matin state 9. Most genomic segments annotated as
enhancer state 9 in ChromHMM were divided into two
enhancer states, 9 and 20, in Spectacle according to their
enrichment of H3K9ac (Figure 2). This result is biologi-
cally significant as it shows that an unbiased analysis of
the epigenomic data for this cell type found this particular
distinction of chromatin states to be statistically impor-
tant for explaining the patterns of chromatin marks and it
is consistent with previous reports that H3K9ac separates
stronger enhancers from weaker enhancers [50]. It would
be expected that if a chromatin state were randomly split
in two then one of the states might have higher enrich-
ment by chance, but we observed that Spectacle state
20 had much more enriched phenotypes and SNPs than
Spectacle state 9 (e.g. 1284 vs 290 SNPs). Our results
were robust whether or not we controlled for the well-
studied major histocompatibility region (e.g. following
[51]), which can skew the statistics we computed.
We found similar results on GWAS SNP enrichment

analysis for the K562 cell line to those for the GM12878
cell line. There were 98 phenotypes whose SNPs were
most highly enriched in one of the strong enhancer
states predicted by either Spectacle or ChromHMM for
K562, an erythroleukemic cell line. Of these states, chro-
matin state 20 from Spectacle, which was not found by
ChromHMM, had the largest number of phenotypes and
largest total number of GWAS SNPs, which were most
highly enriched in it over all strong enhancer states found
by either method (Additional file 1: Table S5). Like pre-
vious analysis, we took the union of all the SNPs for
all the phenotypes to account for correlations between
the phenotypes (for example, two phenotypes could be
similar).
Most segments labeled with ChromHMM enhancer

state 7 were divided into two Spectacle enhancer states,
7 and 20, according to the enrichment of H3K36me3
(Additional file 1: Figure S16). Notably, five out of the
six phenotypes related to erythrocytes were most highly
enriched in Spectacle state 20 (Additional file 1: Figure
S19). Specifically the enrichment in Spectacle state 20 was
higher than the closest strong enhancer state annotated
by ChromHMM for the five erythrocyte-related pheno-
types related to the cell type we are studying. Additional
file 1: Table S5 shows that there are many more pheno-
types and SNPs more highly enriched in Spectacle state
20 compared to Spectacle state 7 (e.g. 1,614 SNPs in
Spectacle state 20 vs 436 SNPs in Spectacle state 7).
This suggests that Spectacle state 20 may be better for
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Figure 4 Chromatin states enriched with GWAS SNPs for autoimmune diseases for GM12878. Art, artificial; Enh, strong enhancer; EnhW, weak
enhancer; GWAS, genome-wide association study; Prom, strong promoter; PromP, poised promoter; PromW, weak promoter; Repr, repressed region;
SNP, single nucleotide polymorphism; Txn, transcribed region.

identifying potential causal variants in this cell type than
other annotated strong enhancers.
We repeated the GWAS analysis for the H1-hESC

cell type but there was no difference between the
strong enhancer state annotations of Spectacle and
ChromHMM, so we did not investigate the enrichment of
GWAS SNPs further (Additional file 1: Table S4).

Analysis of selective constraint at the population genetic
and cross-species levels
Next we quantified the levels of selective constraint act-
ing on the Spectacle chromatin states at the population
genetic and cross-species levels. For each chromatin state
we computed the fraction of SNPs with minor allele fre-
quency (MAF) less than 0.1 at the population level, and
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the mean of phastCons scores at the cross-species level
(see more details in Materials and methods). We used
these data to analyze the levels of conservation of the
different chromatin states (Additional file 1: Tables S7
and S8). In general, we found a reasonable concordance
between the population genetic and cross-species mea-
sures. We found that promoter and transcribed states
tended to be under the strongest negative selection while
repressive and quiescent (null) states tended to be under
the weakest negative selection, consistent with our biolog-
ical intuition. Enhancer states tended to be under interme-
diate levels of negative selection, at least at the SNP level.
Among enhancer states, those with epigenomic marks
associated with either promoters (H3K4me3) or tran-
scribed regions (H3K36me3) tended to be under stronger
negative selection than the other enhancers. Enhancer
state 20 in Spectacle, which showed high enrichment
for GWAS SNPs for GM12878, was under less negative
selection than enhancer state 9 (Mann–Whitney U test:
Spectacle state 20 vs Spectacle state 9: P < 4.1 × 10−10).
This is a biologically plausible result since disease-causing
alleles might be under intermediate levels of selective con-
straint compared to neutral (i.e. non-functional) alleles
and highly constrained (i.e. lethal) alleles. In addition, we
noticed that one transcribed state (Spectacle state 15 of
GM12878) was one of the most selectively constrained
states at the population genetic level but one of the least
selectively constrained at the cross-species level. This pat-
tern is consistent with the action of recent species-specific
selection. Since this chromatin state does not strongly
correspond to cell-type-specific protein-coding exons or
long non-coding RNAs (log2 fold enrichment: 1.7 for
exons and 1.5 for long non-coding RNAs), it presumably
corresponds to a class of lowly expressed and/or poorly
understood non-coding transcripts. The action of recent
selection on this class of transcripts is again consistent
with our biological intuition.
Overall, our results also suggest more general prin-

ciples about the informativeness of different types of
functional annotation for fine-mapping GWAS SNPs. We
have shown that enhancer states annotated from global
epigenomics data are highly enriched for GWAS SNPs
despite not being under strong negative selection. We
compared Spectacle chromatin state 20 of GM12878 with
themost conserved phastCons intergenic regions in terms
of GWAS SNP enrichment (we selected the same num-
ber of conserved genomic segments as in chromatin state
20). The log2 fold enrichment in Spectacle state 20 for
GM12878 vs most conserved regions for all SNPs was 1.87
vs 0.20. Spectacle state 20 of GM12878 had 40 pheno-
types with positive log2 fold enrichment and 14 out of
the 40 phenotypes were autoimmune-related phenotypes,
whereas the most conserved regions had 16 phenotypes
with positive log2 fold enrichment and none of them were

autoimmune-related phenotypes. Similarly, we compared
Spectacle chromatin state 20 of K562 with the most con-
served phastCons regions. The log2 fold enrichment in
Spectacle state 20 of K562 vs most conserved regions for
all SNPs was 1.59 vs −0.32. Spectacle state 20 of K562
had 34 phenotypes with positive log2 fold enrichment
and 6 out of the 34 phenotypes were erythrocyte-related
phenotypes, whereas the most conserved regions had
nine phenotypes with positive log2 fold enrichment and
none of themwere erythrocyte-related phenotypes. These
results suggest that epigenomics-based enhancer predic-
tions may be more informative for fine-mapping GWAS
SNPs than looking for evolutionarily conserved regions. A
similar result was previously found for microRNA binding
sites where predicted conserved microRNA binding sites
were shown to be more informative of selective constraint
than searching for conserved 3′ UTR regions [52].

Cell-type specificity of chromatin states
Finally, we analyzed the cell-type specificity of chromatin
states by performing a combined analysis of epigenomics
data from multiple cell types. In a previous approach,
epigenomics data from nine human cell types were con-
catenated and the same HMM parameters were learned
for the nine human cell types by running ChromHMM for
the virtual long genome [7]. However, there are some dis-
advantages to characterizing cell-type specificity of chro-
matin states in this way. First, this approach produces a
single set of parameters for all cell types, which might not
characterize chromatin states existing in a single cell type
(e.g. a bivalent state in an embryonic stem cell [6]). Sec-
ond, it is non-trivial to interpret the chromatin states of
the genomic segments from multiple cell types from the
concatenated data sets in a post-processing step since the
genome segmentations of the different cell types need to
be aligned and compared.
The TreeHMM paper [21] suggested a more compli-

cated model that utilized the lineage information between
multiple cell types instead of naively concatenating cell
types. However, since the model is more complicated, a
variational approximation was used for parameter learn-
ing, which is technically an unbounded approximation of
the EM algorithm and thus may not always give accurate
biological results. The model also requires that the rela-
tionships between cell types are well described by a tree
and more importantly that the tree is known beforehand.
We took a different approach of stacking epigenome

data sets from multiple cell types to perform a joint anal-
ysis of multiple cell types, similar to [24]. By doing so,
we can learn a single set of chromatin states with a uni-
form genome segmentation for the different cell types.
We stacked three cell types with eight histone marks each
for GM12878 and H1-hESC and seven histone marks for
HepG2 (the H3K4me1mark for HepG2was not available).
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There were 79,839 combinations of the 23 histone marks
in the genome. If each cell type had seven chromatin
states, there would be a total of 73 = 343 possible com-
bined chromatin states for the three cell types. To improve
biological interpretability and running time, we ran Spec-
tacle with 50 combined chromatin states (Additional file 1:
Figure S22), which is still a large number that would be
slow to run using the EM algorithm. Consistent with pre-
vious results [7,21], we found that most enhancers were
cell-type specific while promoter states could be cell-type
specific or constitutive across cell types. We confirmed
the cell-type-specific enhancer states had a distal P300 sig-
nal for only the corresponding cell type and lacked the
TSS signal. Promoter states that were either constitutive
or cell-type specific had a corresponding enrichment of
the TSS signal.
Importantly, we found that higher enrichment of non-

coding GWAS SNPs in strong enhancer states was specific
to the cell-type-specific enhancer states of the GM12878
cell line (Additional file 1: Figure S22, Table S9). Among
132 phenotypes whose SNPs were most highly enriched
in one of the 13 enhancer states, 14 phenotypes were for
autoimmune diseases and all of them were most highly
enriched in one of the enhancer states that are specific to
GM12878.
We note that running the EM algorithm (e.g. with

ChromHMM) with such a large number of hidden chro-
matin states is computationally inefficient. It took approx-
imately 1.6 hr for Spectacle and approximately 8.5 hr for
ChromHMM. This demonstrates that our spectral learn-
ing approach facilitates the analysis of epigenome data
from multiple cell types.

Discussion
We have developed a practical, robust implementation of
a published spectral learning algorithm for HMMs, which
we have specially tuned to specific features of epigenomic
data. We have implemented our method in a software
tool called Spectacle (Spectral Learning for Annotating
Chromatin Labels and Epigenomes), which we have tested
extensively on human epigenomic data sets though it
should be useful for many model organisms as well. We
made a number of technical modifications to a previously
published algorithm [33], which improved its accuracy
and numerical stability on epigenomics data sets. Using
the commonly used Poisson binarization of the ENCODE
epigenetic mark data, we showed that Spectacle is much
faster than ChromHMM for commonly used numbers
of chromatin states and epigenetic marks. Furthermore,
the overall statistical approach appears to be more robust
to class imbalance than the usual maximum likelihood
approach, which is an observation we believe to be novel
for spectral learning. We support our empirical observa-
tions on class imbalance by testing ourmethod extensively

on a set of broad peak epigenetic mark data (Additional
file 1: Figures S4 to S13, Tables S1, S2 and S3). These data
are not commonly used in biological applications but they
are useful for demonstrating the utility of our program on
a data set that exhibits more class balance. For this data
set, we showed that the likelihood appears to be a good
optimization criterion for retrieving biologically relevant
features. In this case, the spectral learning approach and
local likelihood optimization methods, such as EM, are
complementary. Spectral learning can be used to initialize
the EM algorithm, which is a common use of method of
moments estimators in statistics. In this context, we show
that the spectral learning initializer usually outperforms
a previously published initialization heuristic in terms of
finding higher likelihoods, faster running time and higher
accuracy for several independent biological data sets. This
observation may be useful for chromatin state annotation
in model organisms that have proportionally more coding
DNA and non-coding functional regions than humans and
therefore might have epigenome data sets that are more
class balanced.
Overall, our software implementation is freely available

online and is lightweight and easy to use on a regular
desktop without the need for specialized computer hard-
ware. Our code modifies the ChromHMM code, which
has been used by several experimental groups, so we
believe it will be user-friendly and accessible. Importantly,
we show that although the chromatin state annotations
produced by Spectacle are similar overall to those pro-
duced by ChromHMM for two out of three ENCODE
Tier 1 cell types, Spectacle found enhancer subtypes
that were significantly more enriched in GWAS SNPs
for relevant diseases than the enhancer states found by
ChromHMM. Furthermore, the fast running time of Spec-
tacle for high numbers of chromatin states facilitated
the analysis of combined epigenome data sets from mul-
tiple cell types and we found that GWAS SNPs were
enriched in these cell-type-specific enhancer states. Such
a refinement of the chromatin state annotations will
be important for downstream biological applications as
the field moves towards fine-mapping the causal vari-
ants of complex human diseases. Our population genetic
and cross-species analyses of selective constraint on the
Spectacle chromatin states not only revealed interesting
evolutionary patterns but also suggested that enhancer
predictions from epigenomics data may be more infor-
mative for fine-mapping GWAS SNPs than evolutionary
conservation. We note that GWAS SNPs tend to be com-
mon in the population so it is not surprising that they are
not highly enriched in evolutionarily conserved regions.
For rare disease variants, the results could be different.
The refinements to the spectral learning algorithm we

have described can be applied to multiple problems in
computational biology and should be of broader interest.
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To our knowledge we have used spectral learning for one
of the first times to learn HMM parameters explicitly
for a problem in computational biology. A recent work
used spectral learning for poly(A) motif prediction [53].
The authors did not try to recover the HMM parame-
ters explicitly but instead learned them up to an unknown
invertible linear transformation and used the transformed
parameters as features for classification by a support vec-
tor machine. Another recent paper [54] applied a spectral
learning algorithm for contrastive learning to a prob-
lem involving epigenome maps. This is a more restricted
version of the problem we study here in which one is
specifically contrasting two data sets instead of annotat-
ing a single data set. HMMs and the EM algorithm are
used in many other problems in computational biology
for problems as diverse as gene finding, modeling link-
age disequilibrium, predicting enhancers or microRNA
binding sites, and detecting copy number variation from
array CGH data. Thus, it is very possible that the methods
described here may be useful in those settings as well.
We provide an implementation of our method. It uses

Python sparse matrix libraries to allow users to ana-
lyze a large number of chromatin marks, for example
in the Roadmap Epigenomics Project. It is also possible
to reduce the dimension of the observation space in the
HMMusing principal component analysis in a similar way
to [27]. For further technical improvement, one might uti-
lize recent developments in approximate, randomized lin-
ear algebra (e.g. using random linear projections and QR
decompositions for fast SVD computations) and we leave
a full exploration for future work. In addition, we stress
that our overall modeling approach is fundamentally
different from previous methods such as ChromHMM,
which assumed independence between chromatin marks.
Instead we consider all possible combinations of epige-
netic marks and discover arbitrary interactions between
chromatin marks for which there is statistical support.
Since researchers are only at an early stage of explor-
ing the full biological complexity of the epigenetic code,
we believe this is a useful and important aspect of our
approach.

Conclusions
Here we have presented a new software tool, Specta-
cle, for annotating chromatin states in the genome from
epigenome maps, such as those produced by ENCODE.
We have developed a practical implementation of a spec-
tral learning approach for HMMs that was previously
mainly discussed in the theoretical literature and should
be of broad interest for other computational biology prob-
lems. We have also demonstrated that the approach is
faster and more robust to class imbalance than the more
commonly used EM approach. In particular, for two out
of three ENCODE Tier 1 cell types, we show that the

highest enrichment of cell-type-related GWAS SNPs is
in an enhancer state only found in Spectacle and not in
ChromHMM. Furthermore, for both of these cell types,
the enrichment of GWAS SNPs in these enhancer sub-
types inferred from epigenome maps was much higher
than in evolutionary conserved intergenic regions. This
result may suggest a more general principle for future
fine-mapping of GWAS SNPs. We also found that most
enhancers appear to be cell-type specific based on our
analysis of combined epigenomics data from multiple
cell types and we found that GWAS SNPs were highly
enriched in these cell-type-specific enhancer states.
In the future, we believe that having a faster and more

robust chromatin state annotation tool should be useful
for annotating multiple epigenomic maps. Previous works
found associations between disease-causing variants and
epigenomic marks [8,14,55,56], suggesting that a better
understanding of the epigenome might help interpret the
variants underlying human disease. For example, [14] used
ChromHMM to infer variation in chromatin states across
individuals, so we expect Spectacle to be useful for other
similar types of data sets in the future. Indeed there
are currently several major epigenomics projects (e.g.,
BLUEPRINT and the Roadmap Epigenomics Project) pro-
ducing chromatin mark data for many cell types and
human populations [11,12]. Given the rapid decrease
in the cost of sequencing, we also expect that many
more epigenomic maps will be produced for different cell
types, human populations [14], species [13], environmen-
tal conditions and developmental contexts [7,57]. Thus we
expect that the need for fast and robust tools for pro-
cessing this type of data will continue to grow in the
future.

Materials andmethods
Related work
To identify functional elements from epigenomic data,
there are two broad classes of approaches: supervised
and unsupervised learning. Supervised learning associates
patterns of epigenetic modifications with known classes
of functional elements, such as enhancers, promoters
and non-coding RNAs. It generally has good perfor-
mance for known classes of functional elements but it
requires the availability of independently validated exam-
ples and it cannot discover new classes of chromatin states
[5,16,25,43,58]. In contrast, unsupervised learning discov-
ers patterns of epigenetic modifications for each chro-
matin state directly from the data [15,18,59-62]. Here we
take an unsupervised approach as we believe that the cur-
rent state of the field is such that more research is needed
to understand better the variety of possible chromatin
states and the specific epigenetic marks underlying them.
Indeed the results presented in this paper suggest that
additional enhancer subtypes remain to be discovered.
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One method, ChromHMM [15,62], uses a HMM to
model epigenomic data where each chromosome is seg-
mented into non-overlapping regions of 200 bp and each
segment has a binary value representing the presence
or absence of each epigenetic mark. Each segment is
assumed to be in a hidden chromatin state, which defines
a distribution over combinations of epigenetic marks. To
learn the HMM parameters, ChromHMM uses the EM
algorithm [28], also called the Baum–Welch algorithm in
the context of HMMs. To run the EM algorithm, instead of
initializing the parameters randomly, ChromHMM pro-
vides a heuristic initialization method called the infor-
mation method [62]. It then runs the EM algorithm to
convergence, that is, until the difference between the like-
lihood of the current iteration and that of the previous
iteration is less than 0.001. Regardless of convergence, the
maximum number of iterations was set to 200. We ran
ChromHMM for training using four multiprocessors in
parallel on a desktop.
Another method, Segway [18], uses a generalization

of HMMs called dynamic Bayesian networks to model
chromatin states. For example, Segway models the length
distribution of each chromatin state by adding a hidden
state called a countdown variable. Segway has high spa-
tial resolution since it uses a segment size of 1 bp [22].
However, it is much slower than ChromHMM because of
the high resolution and the number of parameters in the
model. Nevertheless, the performance of Segway on bio-
logical data sets is similar to ChromHMM [22]. Since the
state space of Segway is much larger than ChromHMM, it
might be harder to find the global optimum of the likeli-
hood. Currently, Segway cannot be run on a desktop but
needs to be run on a compute cluster.
The self-organizing map (SOM) model [24] gives a finer

resolution analysis of the patterns of chromatin marks. It
takes a genome segmentation as input (e.g. using stacked
chromatin marks from multiple cell types and running
ChromHMM), discovers at least 1,000 distinct chromatin
states, and visualizes the chromatin states in a two-
dimensional map. Similar chromatin states are located
close to each other in the map and so the SOM method
is able to find interesting clusters of chromatin states. The
SOMmodel does not need to fix the number of chromatin
states ahead of time but allows a larger number of chro-
matin states. This fine-resolution analysis was able to find
clusters enriched in specific GO terms. It is also not obvi-
ous how to focus on particular chromatin states in the
map since there are so many chromatin states. Instead the
user is encouraged to use the map interactively. In general,
the SOM model is complementary to the Spectacle soft-
ware, and Spectacle can be used instead of ChromHMM
in the initial genomic segmentation.
In addition, there are a few other methods that are more

focused on different aspects of analyzing epigenomic

data, such as enabling joint analysis of multiple data sets
(jMOSAiCS [26]) and incorporating lineage information
between cell types (TreeHMM [21]). As described above,
many methods use HMMs to model the chromatin states
and these methods differ mainly in the way they model
the epigenetic mark data. For instance, somemethods dis-
cretize the data while others fit Gaussian distributions to
the data. Here we did not explore different approaches to
modeling the underlying ChIP-seq mark data but rather
focus on exploring the properties of spectral learning in
the context of chromatin state annotation. We present
our results comparing Spectacle with ChromHMM in the
main text and our results comparing with other methods
in Additional file 1.

HiddenMarkov models and spectral learning
We discuss spectral learning from the viewpoint of the-
oretical machine learning and the few attempts to apply
spectral learning in other applied fields in Additional
file 1. Here we describe our practical implementation
of spectral learning for the chromatin state annotation
problem.

Description of the hiddenMarkovmodel
We use HMMs to represent the chromatin states as hid-
den states and all possible combinations of (binarized)
epigenetic marks as observations. The whole genome is
divided into segments of size 200 bp following [15,62].
We define the HMM in matrix form as follows. Note
the matrix and vector indices in this paper. For a matrix
M, M[i, j] denotes an element in the ith row and the jth
column. For a vector v, v[i] denotes the ith element.
Let K be the number of hidden chromatin states and

N be the number of possible combinations of epigenetic
marks (i.e., N = 2M where M is the number of epigenetic
marks). Let A be the state transition matrix where A[i, j]
is the probability of transition from state j to state i for
1 ≤ i, j ≤ K . Let O be the emission matrix where O[i, j]
is the probability of observing the ith combination of the
epigenetic marks in state j where 1 ≤ i ≤ N and 1 ≤
j ≤ K . Let π be the initial state distribution vector where
π [i] is the probability of state i in the first segment of each
chromosome when 1 ≤ i ≤ K . To simplify the descrip-
tion of the method, the whole genome is considered to be
one chromosome by concatenating all chromosomes. Let
T be the number of segments in the genome. Let xt be
the observation at the tth segment and let xt1:t2 represent
xt1 , xt1+1, . . . , xt2 for t1 ≤ t2. Given the HMM parameters,
θ = (A,O,π), the likelihood of an observed sequence is:

P(x1:T |θ) =
∑

h1,h2,...,hT

P (x1:T , h1:T |θ)

= 1TKAOxT . . .AOx2AOx1π

= 1TKBxT . . .Bx2Bx1π
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where ht in the first equation is the hidden state
at the tth segment and the summation is taken
over all possible sequences of hidden states. Oi =
diag(O[i, 1] ,O[i, 2] , . . . ,O[i,K] ), i.e., Oi is a matrix diag-
onalizing the ith row of O where Oi[j, j]= O[i, j] for 1 ≤
i ≤ N and 1 ≤ j ≤ K and non-diagonal elements in Oi are
zero. Bi is called the observable operator [63], defined as
Bi = AOi, and 1TK is a vector [1, 1, . . . , 1] of size K .

Estimating the hiddenMarkovmodel parameters using
spectral learning
The original paper [33] does not attempt to estimate
parameters directly as it can be unstable.We use amethod
adapted from [64] for inferring general phylogenetic tree
models (which include HMMs as a special case) and
improve the method in a deterministic and principled
way using major observations (see further discussion in
Additional file 1). Given all observed consecutive triples of
observations in the genome, (xt , xt+1, xt+2), 1 ≤ t ≤ T−2,
the marginal probabilities of observing the counts of sin-
gletons, pairs and triples in the data (the moments in the
method of moments) are defined in vector and matrix
form as follows:

P1[i] = Pr[xt = i] , 1 ≤ i ≤ N
P2,1[i, j] = Pr[xt+1 = i, xt = j] , 1 ≤ i, j ≤ N

P3,x,1[i, j] = Pr[xt+2 = i, xt+1 = x, xt = j] , 1 ≤ i, x, j ≤ N

P3,1[i, j] =
∑

1≤x≤N
P3,x,1[i, j]

= Pr[xt+2 = i, xt = j] , 1 ≤ i, j ≤ N .

Note that the counts of triples (the third moment) is
actually a third-order tensor but for computational rea-
sons we represent it by a collection of matrices indexed by
the middle observation x, where each matrix corresponds
to a slice through the tensor. Hsu et al. [33] showed that
we can infer the HMM parameters from these marginal
probabilities as follows. Let U be an N × K matrix of the
top K left singular vectors (computed by the SVD) of P3,1.
Intuitively, U is a surrogate for the observation matrix O.
We computed the following matrix Cx for each obser-

vation x by expressing the sample moments in terms of
the parameters, P3,x,1 = OAOxAdiag(π)OT and P3,1 =
OAAdiag(π)OT ,

Cx :=
(
UTP3,x,1

) (
UTP3,1

)+ =
(
UTOA

)
Ox

(
UTOA

)−1

(1)

where M+ is the Moore–Penrose pseudoinverse of M.
Since Ox is a diagonal matrix, it is easily seen that UTOA
represents the eigenvectors of the matrix and the diagonal
elements of Ox are exactly the eigenvalues. We will dis-
cuss how to compute the eigenvectors for epigenomic data

below. For now, suppose that the eigenvectors,UTOA, are
given. Then for each observation x,

(
UTOA

)−1
Cx

(
UTOA

)
=

(
UTOA

)−1 (
UTOA

)
Ox

×
(
UTOA

)−1 (
UTOA

)
= Ox.

(2)

Thus we can infer the emission matrix elements for x
and the emission matrixO is inferred by combining all the
Ox’s. Note that we cannot infer the emission matrix ele-
ments directly from the eigenvalues computed from the
above matrix Cx because we do not know the order of the
eigenvalues. We circumvent this problem by utilizing that
the eigenvectors are the same for all observations. Given
the emission probabilities, the remaining parameters of
the HMM, π and A, are easily computed by expressing the
sample moments in terms of the parameters, P1 = Oπ

and P2,1 = OAdiag(π)OT , and the assumption that A,O
and diag(π) are rank K (i.e. full-rank) as follows:

π = O+P1. (3)
A = (

O+O
)
A

(
diag(π)diag(π)−1)

= (
O+O

)
Adiag(π)

(
O+O

)T diag(π)−1

= O+ (
OAdiag(π)OT

) (
O+)T diag(π)−1

= O+P2,1
(
O+)T diag(π)−1. (4)

The original algorithm of [33] assumed that we have
access to many short samples from the HMM. When
adapting the algorithm for a few long samples (e.g. chro-
mosomes in the epigenomic data), we found that the dis-
tribution of initial observations was quite different from
the distribution of all observations. Estimating the initial
state distribution π from the distribution of all observa-
tions P1 introduces a significant amount of noise. There-
fore, we modified P1 to Pinit1 , which is the distribution of
the first segment of all the chromosomes and we slightly
modified Equation 3 as

π = O+Pinit1 . (5)

More significantly, we empirically found that most
entries of π are close to zero and so taking the inverse of
π in the calculation of A would introduce noise. Thus, we
modified the computation of A to remove the dependence
on π as follows:

A = A
(
Adiag(π)OT

) (
Adiag(π)OT

)+

=
((
O+O

)
A

(
Adiag(π)OT

)) ((
O+O

) (
Adiag(π)OT

))+

= (
O+P3,1

) (
O+P2,1

)+ .
(6)
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Computing the eigenvectors usingmajor observations
It is not easy to compute the eigenvectors correctly
because of noise in the data. If we compute UTOA from
the matrix for each observation, we will generally get dif-
ferent UTOA’s for each observation in practice. Thus, we
used a method based on our empirical observations about
the epigenomic data.
For each state, we identified the major (i.e. most fre-

quently occurring) observation in the genome segments
labeled with that state by taking the corresponding sin-
gular vectors from the matrix U and using it to perform
the eigen decomposition. Note that this approach differs
from that of [65], which required a much stronger anchor
word assumption, where for each chromatin state there
is some epigenetic mark combination that occurs only in
that state and none of the others. For each hidden state i,
we picked the major observation x′ = argmaxx{U[x, i]2 },
analogously to a previous method for learning topic mod-
els from text documents [34]. Empirically we found that
the major observation tends to appear in the chromatin
state much more often than in the other chromatin states
but we stress that this is not required by our method.
Then we computed eigenvectors from Cx′ and extracted
a single eigenvector corresponding to the largest eigen-
value, which in practice was usually well separated from
the other eigenvalues. We did this for all states separately
and combined the eigenvectors into a single matrix.
In addition to picking a major observation for each state

i, we also tried to compute the weighted summation ofCx’s
weighted byU[x, i]2 for computing the eigenvectors. If the
major observation makes U[x, i]2 close to 1, the result of
taking the sumwill be very similar to ourmethod of taking
the max, which is what we indeed observed.

Handling noisy data
Since the observation data are noisy, some numerical
issues can occur when computing the SVD and eigen
decomposition. Previously, [66] described implementa-
tion issues using spectral learning for a different latent
variable model in natural language processing. We imple-
mented several optimizations to solve the analogous
issues for HMMs.

Handling negative probabilities
The estimated probabilities should be non-negative but
the estimated parameters can have negative values
because the signs can be flipped while performing the
numerical computations. Therefore, we took the abso-
lute value of the estimated parameters and normalized the
parameters following [66].

Parameter adjustment
Although we estimated the HMM parameters using
spectral learning (1), these estimates can sometimes be
improved slightly by using the estimates from spectral
learning as an initializer to the EM algorithm. We did not
use this approach for the results reported in the main text
but did so for the results with the Scripture binarization
reported in Additional file 1 and this option is provided
for users of the software.

Smoothing of observationmatrices
Finally, although we did not use this optimization for
the biological results reported here, our software allows
for smoothing the observed pairs and triples matrices to
address noise and data sparsity. Intuitively, our smoothing

Algorithm 1 Spectral learning algorithm
Data:K : number of chromatin states, N : number of observations (combinations of epigenetic marks),

T : number of genomic segments, x1:T : observations for T segments
Estimate sample moments P1, P2,1, P3,1, and P3,x,1 from all triples of observations, (xt , xt+1, xt+2)
for 1 ≤ t ≤ T − 2.

P̂1[i]= #(xt = i)
T

P̂2,1[i, j]= #(xt+1 = i, xt = j)
T − 1

P̂3,1[i, j]= #(xt+2 = i, xt = j)
T − 2

P̂3,x,1[i, j]= #(xt+2 = i, xt+1 = x, xt = j)
T − 2

Let U be a matrix of the top K left singular vectors of P̂3,1 from computing the SVD.
For each state i, compute the matrix Cx′ defined in (1) for the major observation
x′ = argmaxx

{
U[x, i]2

}
and compute the eigenvector v corresponding to the largest eigenvalue.

Combine all the eigenvectors v’s from all K states.
Infer the emission matrix O using (2).
Infer the initial state vector π and the transition matrix A using (5) and (6).
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method is similar to adding pseudocounts to sparse data
matrices except it uses the marginal frequencies of the
observations instead of a uniform pseudocount. We pro-
vide this option for users who have noisier data than the
ENCODE data.

Data sets and experimental settings
For the epigenetic modification data, we used eight his-
tone marks (H3K4me1, H3K4me2, H3K4me3, H3K9ac,
H3K27ac, H3K27me3, H3K36me3 and H4K20me1) for
eight ENCODE cell types (GM12878, H1-hESC, HMEC,
HSMM, HUVEC, K562, NHEK and NHLF) [4] from the
processed data from ENCODE [67]. For two additional
ENCODE cell types, HeLa-S3 and HepG2, the processed
data for the histone mark H3K4me1 were not available
and so we used seven histone marks for those two cell
types. We note that H3K4me2 can be used instead of
H3K4me1 for identifying enhancers, so we expect all of
the ten cell types we tested to give meaningful biologi-
cal results. The processed ChIP-seq data from ENCODE
were binarized following the Poisson binarization method
of [7]. From the binarization, our final data set consisted
of presence/absence calls for each histone mark for each
segment, where the human reference genome was divided
into 15,181,508 segments of size 200 bp. The observation
space consisted of all non-zero combinations of epigenetic
marks and in our case the number of possible observations
was 28 = 256. We fixed the number of chromatin states
to 20 unless stated otherwise, following the suggestion
of previous studies (e.g. [7]). This number of chromatin
states is readily interpretable biologically and allows us
to compare our annotations with previously published
annotations.
For further biological analysis, we focused on three

ENCODE Tier 1 cell types (GM12878, H1-hESC and
K562) and we used external biological data sets to
validate our inferred chromatin states. GM12878 is a
B-lymphocyte cell line infected by the Epstein–Barr virus,
H1-hESC is a human embryonic stem cell line and K562
is an erythrocytic leukemia cell line. We used active TSS
data from Cap Analysis of Gene Expression (CAGE) and
polyA RNA-seq data, both from ENCODE [68] (version
10, May 2012). RNA Polymerase II (Pol2), P300 ChIP-
seq and DNase I hypersensitivity data were also used. We
used long non-coding RNAs from [69], and conserved
enhancer regions from the VISTA enhancer browser [70].
For distal P300 peaks, we removed peaks within ±2.5 kb
of the above TSS data. Also, we used PRMs and DRMs
derived from transcription-related factor binding data
[43]. All of the data sets except the VISTA enhancer data
were specific to the cell type that we used for training the
HMM. We excluded genomic segments (approximately
0.3% of the genome) in the Duke excludable regions
following [22].

Gene ontology term analysis
We used the program GREAT [42] to identify over-
represented GO terms for regulatory elements. For pro-
moters, we tested segments in a promoter state against all
segments in all promoter states as background (parame-
ters: proximal was 1 kb upstream and 1 kb downstream
and no distal). For enhancers, we tested segments with
distal P300 signal in an enhancer state against all seg-
ments with distal P300 signal in all enhancer states as
background (parameters as default: proximal was 5 kb
upstream and 1 kb downstream and distal was up to
1,000 kb).

Conservation analysis
We quantified the levels of selective constraint acting on
the Spectacle chromatin states at the population genetic
and cross-species levels. To analyze population genetic
levels of constraint, we computed the MAFs of all SNPs
from the European populations in the 1000 Genomes
Project [71], processed as previously described [72]. We
chose to use the MAF statistic instead of rooting the
SNPs (e.g. with the chimpanzee allele) to avoid complica-
tions with multiple mutations at highly mutable sites (e.g.
CpG sites) and because the extent of positive selection
in humans is expected to be low due to the low effec-
tive population size. Thus the MAF is expected to be a
reasonable indicator of the strength of negative selection
on the SNPs. To minimize the effects of very rare varia-
tions, which are likely to reflect primarily the nucleotide
mutational process, we removed SNPs withMAF less than
0.01, leaving 16,455,987 SNPs. For each chromatin state,
we quantified the level of selective constraint by comput-
ing the fraction of low-frequency SNPs in that chromatin
state, specifically those with MAF less than 0.1. We com-
pared this with a background set of SNPs consisting of
the 11,015,766 SNPs not contained in genes annotated by
RefSeq, following [72].
To quantify the level of evolutionary conservation

across species, we downloaded phastCons scores for
the primate subset of the 46 vertebrate species from
the UCSC Genome Browser (phastCons46way.primates)
[73]. For each segment in the genome, we computed
the mean of phastCons scores of the 200 bases for
a conservation score of the segment. For each chro-
matin state, we quantified the cross-species level of selec-
tive constraint by computing the mean of phastCons
scores of all bases for all segments in that chromatin
state.

Additional file

Additional file 1: Supplementary note. Supplementary results, figures
and tables.

http://genomebiology.com/content/supplementary/s13059-015-0598-0-s1.pdf
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