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Genomic analysis of emerging pathogens:
methods, application and future trends
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Abstract

The number of emerging infectious diseases is
increasing. Characterizing novel or re-emerging
infections is aided by the availability of pathogen
genomes. In this review, we evaluate methods that
exploit pathogen sequences and the contribution
of genomic analysis to understand the epidemiology of
recently emerged infectious diseases.
health questions such as how quickly an epidemic spreads
Introduction
When a pathogen crosses over from animals to humans,
or an existing human disease suddenly increases in in-
cidence, the infectious disease is said to be ‘emerging’.
The number of emerging infectious diseases (EIDs) has
increased over the last few decades, driven by both an-
thropogenic and environmental factors [1]. These include
the expansion of agricultural land, which increases the ex-
posure of livestock and humans to infections in wildlife
[2]; a greater volume of air traffic, enabling EIDs to rapidly
spread across the world [3,4]; and climate change, which
alters the ecology and density of animal vectors, thereby
introducing diseases to new geographic locations [5].
Novel strains of existing pathogens also have the potential
to cause large epidemics. The over- and misuse of anti-
microbial drugs have contributed to the growing number
of drug-resistant pathogen strains [6,7].
Detecting, characterizing and responding to an EID re-

quires co-ordination and collaboration between multiple
sectors and disciplines. Laboratory-based research helps
to characterize the pathogen and its interactions with
host cells, but is less useful for quantitative understanding
of population-level disease dynamics. Modeling approaches
enable a large number of hypotheses to be tested, which
might not be logistically or ethically feasible in laboratory
and field experiments. In addition to characterizing past
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disease dynamics, modeling future trends informs deci-
sions regarding outbreak response and resource allocation
[8]. Modeling plays an especially important role in epi-
demiological studies of infectious disease spread, because
the transmission of infectious disease between individuals
is not directly observable. At the individual level, trans-
mission times and who infected whom are typically un-
known. And at the population level, disease burden needs
to be inferred from observable data. Important public

and how many people will be infected are hard to quantify
without a mechanistic understanding of underlying factors
driving disease transmission. By expressing disease spread
in mathematical terms, statistical properties of epidemics
can be estimated to help address specific questions regard-
ing disease spread and control efforts [9].
Another discipline contributing to the study of EIDs is

pathogen genomics. As sequencing technology has be-
come more accessible and affordable, genetic analysis
has played an increasingly important role in infectious
disease research. Sequencing pathogens can confirm sus-
pected cases of an infectious disease, discriminate between
different strains, and classify novel pathogens. In addition
to examining individual pathogen sequences, multiple se-
quences can be analyzed together using phylogenetic
methods to elucidate evolutionary [10] and transmission
[11] history. Just as mathematical models of disease trans-
mission help to capture the epidemiological properties of
an infectious disease, modeling the molecular evolution of
pathogen genomes is important for phylogenetic methods.
Besides characterizing the genetics and evolution of a

pathogen, mathematical models used in population genet-
ics link demographic and evolutionary processes to tem-
poral changes in population-level genetic diversity. The
coalescent population genetics framework was developed
so that demographic history could be inferred from the
shape of the genealogy linking sampled individuals [12,13].
More recently, the birth-death model has been applied
to infectious diseases to infer epidemiological history
from a genealogy [14,15]. Given the link between pathogen
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evolution and disease transmission, there is a trend towards
integrating both epidemiologic and genetic data in the same
analytical framework [16-18].
In this review, we provide an overview of recent devel-

opments in genomic methods in the context of infectious
diseases, evaluate integrative methods that incorporate
genetic data in epidemiological analysis, and discuss
the application of these methods to EIDs.

Role of genetics in studying infectious diseases
Over the last two decades, sequence data have increased
in quality, length and volume due to improvements in
the underlying technology and decreasing costs. As a re-
sult, pathogen sequences are regularly collected during
routine surveillance and clinical studies. Just as mathem-
atical modeling can be used to analyze surveillance data
to reveal details of disease transmission (Box 1), analysis
Figure 1 Contribution of genomic analysis to epidemiological studies
obtaining a multiple sequence alignment of pathogen sequences from wh
between samples. Further population genetic analysis using the coalescent
on the sample phylogeny. (b) Coupling phylogeny with additional informa
patterns of disease spread, and transmission chains. The results of such phy
transmission is not always clear and there might exist missing intermediate
characterize past epidemiological dynamics and estimate epidemiological p
of pathogen genomes employs mathematical frameworks
to elucidate pathogen biology, evolution and ecology
(Figure 1).
At the most basic level, mathematical models are used

to find the optimal alignment of pathogen sequences.
Multiple sequence alignment is useful for finding highly
conserved or variable regions, shedding light on the mo-
lecular biology of the pathogen. Furthermore, coupling
sequences with clinical information can help identify the
contribution of polymorphic sites to disease. Revealing
the evolutionary history of a pathogen requires a quanti-
tative description of relatedness. Based on polymorphic
sites in the sequence alignment, a model of sequence
evolution is then used to reconstruct the phylogeny [19].
Often, there is insufficient genetic diversity in the sample
to fully infer the phylogeny without ambiguity. In such a
case, it is useful to consider a tree as an unknown set of
of emerging infectious diseases. (a) Genomic analysis begins with
ich a phylogeny can be built to represent the evolutionary relationship
framework can reveal the population history of the pathogen based
tion is useful for uncovering zoonotic origins, the spatiotemporal
logenetic analysis should be interpreted with care as the direction of
links. (c) Coalescent analysis of pathogen genealogy is used to
arameters, such as the reproductive number.
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parameters and obtain its posterior probability distribution
using a Bayesian framework, such as the Markov Chain
Monte Carlo (MCMC) approaches [20,21].
Biological samples from which pathogen genetic ma-

terial is sequenced are usually associated with geographic
or temporal information (Figure 1b). When this additional
information is available, phylogenetic methods can reveal
the spatiotemporal spread of the pathogen in the popula-
tion. If an outbreak is densely sampled, then the pathogen
phylogeny provides information about the underlying trans-
mission network and helps to uncover who infected whom
[22,23], though phylogenetic clustering alone is usually
not sufficient to prove direct transmission or direction of
infection (Figure 1b).
Incorporating sampling times helps to convert a phyl-

ogeny specified in units of nucleotide substitutions to a
phylogeny specified in units of time [24]. The conver-
sion is straightforward if sequence evolution follows a
strict molecular clock, whereby the rate of substitution
remains constant over time. However, selection pressure
and population bottlenecks can lead to changes in the
rate of substitution [25]. More flexible models have been
developed to incorporate time-varying rates of evolution
[26,27]. With branch lengths in units of real time, the
start date of an epidemic can be estimated. Whereas
phylogenetics aims to delineate the relationship between
individuals, population genetics aims to link population
processes to observed patterns of genetic diversity. In-
ferences regarding pathogen population history are
based on the genealogy, or ancestry, of sequences
from sampled individuals, and often carried out in a
retrospective population genetics framework known
as the coalescent [12] (Box 2). A genealogy describes the
ancestry of sampled individuals. Going backwards in time,
pairs of lineages coalesce when they share a common an-
cestor, until the last two lineages coalesce at the time of
the most recent common ancestor (TMRCA) for the en-
tire sample.
Since the turn of the century, the coalescent has been

increasingly applied to infectious disease research to infer
epidemic history from pathogen sequences, thereby link-
ing pathogen evolutionary history to disease epidemiology
(Figure 1c). The method is especially useful for analyzing
infectious diseases with mild or asymptomatic infections,
for which case-based surveillance data severely underesti-
mate prevalence, because the coalescent assumes a small
sample compared to the population size [28-30].
Other approaches have been developed to make epi-

demiological inferences from genetic data. Of particular
note is the birth-death model [31], which describes the
rates of transmissions, recoveries and deaths, and sam-
pling events in terms of the sample genealogy [14]. Just
as there are coalescent methods incorporating population
structure [32-34] and compartmental models [35-37],
similar methods exist in the birth-death framework
[38,39]. Unlike the coalescent framework, the birth-
death model is still valid for densely sampled populations,
which makes it more useful for studying small outbreaks.
However, accurately inferring epidemiological parameters
depends on correctly specified sampling proportions [40].
Although the two approaches are methodologically differ-
ent, both aim to reconstruct pathogen population history
and produce estimates of epidemiological parameters,
such as the reproductive number (R0). The focus on the
coalescent framework in this review is due to its more
pervasive use in the literature and its greater versatility
when integrated with epidemiological models compared
to birth-death models.
Because of the simplistic assumptions of population gen-

etics models, the population size inferred using coalescent-
based methods cannot be directly interpreted as pathogen
population size (prevalence of infection). It is rather the
effective population size, Ne (Box 2), which refers to the
size of a Wright-Fisher population that would produce the
same level of genetic diversity as observed in the sample.
In real populations, the variance of the offspring distribu-
tion (Box 1) is higher than expected in a Wright-Fisher
population due to heterogeneity in host infectiousness,
non-random mixing of the population, and migration
events. The consequence of a large variance is that
there is a greater discrepancy between the effective and
census population sizes [41]. Accounting for the disper-
sion of the offspring distribution is especially important
when analyzing infectious disease data because of the
widespread occurrence of transmission heterogeneity [42].
Another statistical property of epidemics affecting the

results of modeling studies is the generation time distri-
bution, which describes the time between infection of
the primary case and of secondary cases. Obtaining an
estimate of the generation time is important for two rea-
sons. First, estimates of R0 from the initial growth rate
of an epidemic depend on the generation time distribu-
tion [43]. As R0 is the mean of the offspring distribution,
its value affects the relationship between the effective
population size, Ne, and the census population size, N.
Second, the coalescent model was originally specified in
units of generations, and so estimates in this framework
need to be converted to natural units using the gener-
ation time, Tg.
Because transmission events are rarely observed, the

generation time distribution is often approximated by
the distribution of the serial interval, which is the time
between onset of symptoms in the primary and second-
ary cases. The two distributions generally share the same
mean but might have different variances [44]. Furthermore,
the observed generation time decreases as the epidemic
grows but increases again after the epidemic peak due to
right censoring [45].
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Integrating genetics with other data
As both sequence and surveillance data contain informa-
tion regarding the transmission process, simultaneously
analyzing both datasets should yield more accurate esti-
mates of epidemiological parameters than separate analyses
[17]. The recently established discipline of phylodynamics
takes an interdisciplinary approach to understand the
pathogen phylogenetics and epidemiology in terms of
disease transmission.
Most efforts thus far have focused on enhancing phylo-

genetic and population genetic analyses by incorporating
spatial and temporal information about the sequences.
The molecular clock model assumes a constant rate of
evolution and thus helps to estimate the time of the most
recent common ancestor of the sample, which approxi-
mates the start date of an epidemic. Molecular clock ana-
lysis has been used to date the emergence of a range of
emerging pathogens from HIV [46] to multidrug-resistant
Streptococcus pneumoniae [47].
Linking geographic information with sequences can re-

veal the spatial spread of infectious disease. Phylogenetic
reconstruction of seasonal influenza (H3N2) sequences has
revealed the contribution of viral circulation in temperate
regions to the global genetic diversity of influenza, and de-
termined that not all epidemics in temperate regions are
seeded by strains from South East Asia [48,49]. Also using
global sequences, hepatitis C virus (HCV) subtypes were
shown to spread from developed to developing countries
[50]. Finally, phylogeographic analysis of methicillin-resistant
Staphylococcus aureus samples identified England as the
source of the EMRSA-15 lineage [51].
By contrast, there have been relatively few studies in-

corporating genetic data into epidemiological frame-
works. Although genetic analysis plays an important role
in elucidating transmission links in disease outbreaks
[20,21,52], its integration with epidemiological models to
understand population-level disease dynamics has been
more limited. In one of the first papers to link coalescent
inference to mathematical models in epidemiology, the
effective population sizes of HIV-1 subtypes A and B
were estimated from the maximum likelihood trees of
viral sequences [53]. In addition to revealing population
sizes, Pybus et al. [54] estimated the R0 values of HCV
subtypes (1a, 1b, 4 and 6) by inferring the epidemic
growth rate from viral genealogy. Taking integration a
step further, the coalescent process has been described
for compartmental epidemiological models such as the
Susceptible-Infected-Recovered (SIR) model, thereby en-
abling epidemiological parameters to be inferred from the
genealogy [35]. To infer demographic history from both
pathogen genomes and epidemiological data, Rasmussen
et al. [17] developed a Markovian framework in which the
population size at each time step was estimated by taking
into account both the surveillance data and the genealogy.
The epidemic history reconstructed using both datasets
was more accurate than when analyzing each type of data
separately.
In all the above methods, the genealogy of the sampled

sequences was fixed. However, there might be great uncer-
tainty regarding the order and the timing of coalescence,
especially if the sequences are sampled within a short time
period. While genealogical reconstruction using Bayesian
MCMC approaches allows phylogenetic uncertainty to be
incorporated into estimates of population size [13,31], an
integrative model is lacking in which uncertainties arising
from both genetic and epidemiological data are incorpo-
rated during demographic reconstruction.

Application to emerging pathogens
Models of pathogen evolution and mechanistic models of
disease spread have increased in complexity. There is also
greater computational power to test these models with
data. However, these sophisticated models have mostly
been applied to infectious diseases for which abundant
data are available. For example, new methods are most
often tested on the HIV-1 pandemic [15,34,35,55], for
which data have been extensively collected from various
settings and sources since the virus was first character-
ized three decades ago. It is worthwhile to evaluate how
genomic methods have been applied to other diseases
that have emerged more recently. In this section, we will
present three case studies of recently emerged infec-
tious diseases to illustrate the power and shortcomings
of genomic methods discussed in this review.

Ebola virus emergence in West Africa
Since emerging in Guinea in March 2014, Ebola virus
(EBOV) has spread to other countries in Western Africa,
resulting in the largest outbreak of Ebola since it was first
identified in 1976. The first viral genomes were made
available just a month after alarm was raised about a new
Ebola outbreak in Guinea [56], with further sequences col-
lected in Sierra Leone [57]. By aligning all the genomes, a
number of polymorphic sites were identified, including
eight in highly conserved regions of the genome. Further
association studies are needed to clarify the role of these
genetic variants in determining disease outcome. Using
the sampling dates of the sequences and a molecular clock
model, phylogenetic analysis of 81 EBOV sequences re-
vealed a start date of February 2014 in Guinea, spreading
to Sierra Leone by April 2014 [57].
Uncovering the relationship between the 2014 EBOV

lineage and previous EBOV outbreaks has proved trick-
ier than understanding the disease dynamics during the
2014 outbreak. Initial phylogenetic analysis suggested
that lineages causing the present outbreak did not clus-
ter with EBOV strains that caused earlier outbreaks in
Central Africa [56]. However, Dudas and Rambaut [58]
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noted that the divergence of Guinea sequences from
those of previous outbreaks was because they were se-
quenced most recently and had accumulated the high-
est number of substitutions. Assuming that the EBOV
genome followed a molecular clock model, the authors
re-rooted the tree to a lineage that caused an outbreak
in 1976 [58]. Instead of silently circulating in West Africa,
the EBOV lineage causing the current outbreak likely
descended from a lineage that previously caused outbreaks
in the Democratic Republic of Congo.
These studies highlight two issues. First, correct rooting

of a phylogeny is important for accurate inference of past
epidemic history. Correct rooting can be achieved by
using an out-group, but one was not available in the case
of this EBOV strain. This leads onto the second issue.
Without sequences from animal hosts, the mechanism by
which EBOV was sustained between outbreaks remains
unknown.

Middle East respiratory syndrome coronavirus
Middle East respiratory syndrome coronavirus (MERS-
CoV) first appeared in Saudi Arabia in 2012, and has
since been reported in several neighboring countries in
the Arabian Peninsula and on other continents [59].
Despite the dearth of sequence data, coalescent-based

analysis of 10 genomic sequences produced estimates of
the TMRCA (March 2012; 95% confidence interval (CI):
November 2011 to June 2012), R0 (1.21; 95% CI: 1.08,
1.40), and doubling time (43 days; 95% CI: 23, 104 days)
[60]. Without further sequencing of the animal reser-
voirs, the authors could not infer whether these esti-
mates applied to the animal reservoir or the human
epidemic, because the methods are agnostic as to where
transmission and evolution occur. The credible intervals
around the estimates were unsurprisingly large given the
small sample size.
Unlike the 2014 EBOV outbreak, which is sustained by

human-to-human transmission [57], there appears to
have been multiple introductions of MERS-CoV into the
human population. Identification of the animal reservoir
is therefore crucial for establishing risk factors of infec-
tion and planning appropriate interventions to control
the disease. Since bats are reservoirs for other corona-
viruses, their being a reservoir host is possible. A 182-
nucleotide-long region of the RNA-dependent RNA
polymerase gene was found to be 100% identical be-
tween a viral sample from a patient in Saudi Arabia
and from a bat nearby, though the region is known to
be highly conserved [61]. However, antibodies against
human MERS-CoV have been detected in dromedary
camels [62], the camel MERS-CoV genome is similar
to human MERS-CoV [62], and there are reports of
close contact between patients and camels [63]. Phylo-
genetic analysis of coronavirus sequences from bats,
dromedaries and humans indicate a bat origin, with drom-
edary camel as an intermediate host [64]. It is possible that
there are other animal reservoirs not yet sampled, which
highlights the need to carry out extensive animal sur-
veillance to characterize the emergence of an infection
in humans.

Unraveling the complex evolutionary history of pandemic
H1N1 influenza
With sequences collected over three decades from humans,
pigs and birds, the origin of the pandemic H1N1 influenza
A strain (pdmH1N1 or ‘swine flu’) was elucidated soon
after emergence. Within two months of the first reported
case of swine flu in humans, genomic analysis of the novel
influenza strain had been carried out. A phylogeny was
constructed for each of the eight genomic segments with
sequences from humans, swine and birds. Comparison of
these eight phylogenies revealed a complex history of reas-
sortment with a mixture of gene segments from all three
groups. The start of the pandemic was estimated to be the
end of 2008 or early 2009, and the dates of the reassort-
ment events leading to pdmH1N1 were also obtained
[10]. Without good surveillance of influenza in the animal
reservoir, the origin of the novel strain would have been
difficult to uncover.
By analyzing 11 hemagglutinin sequences collected over

a one-month period, the start date of the epidemic was
estimated to be in late January 2009 [65]. Repeating the
phylogenetic and molecular clock analyses with a fur-
ther 12 sequences shifted the estimated start date two
weeks earlier. Fitting an exponential growth model to
the sequence data, R0 was estimated to be 1.22, slightly
lower than inferred from epidemiological data but with
overlapping confidence intervals.
To determine at which point during the pandemic co-

alescent analysis would have provided accurate and precise
estimates of evolutionary rate, R0 and TMRCA, real-time
estimates of these parameters were obtained for genomic
sequences collected in North America [66]. Accurate esti-
mates could have been obtained as early as May, when
100 viral genomes had been sequenced. More precise esti-
mates could have been obtained by the end of June, when
164 had been sequenced. However, inclusion of more se-
quences of longer length only slightly improved the accur-
acy of initial estimates [66].

Future directions
Most statistical models in population genetics have fo-
cused on the application of such methods to viruses, al-
though this bias is perhaps unsurprising given the large
proportion of EIDs caused by viruses [1]. Whole-genome
sequencing of bacterial isolates is becoming more wide-
spread, and can help to uncover genetic determinants of
clinical severity, elucidate pathogen-host interactions, and



Box 1. Key concepts in mathematical modeling of
infectious disease transmission

Representing infectious disease transmission in a mathematical

framework requires distilling complex observations into simple

but informative expressions. Perhaps the most important statistical

property of interest to an epidemiologist is the basic reproductive

number, R0, which represents the mean number of secondary

infections caused by each infected individual in a wholly

susceptible population. An epidemic can only occur if R0 > 1. As

an epidemic progresses, or if there is pre-existing immunity in a

population, R0 is no longer appropriate for describing the number

of secondary infections per primary infection. Instead the effective

reproductive number, R, is used. Another important statistical

property of an epidemic is the generation time, Tg, which is the

mean time between when an individual becomes infected and

when they infect others. The combination of R0 and Tg provides

an indication of how quickly an epidemic will spread.

The most common type of model used in infectious disease

research is the compartmental model. Given a set of parameters,

a compartmental model tracks the temporal dynamics of

subpopulations that are characterized by disease status. For

example, a Susceptible-Infected-Recovered (SIR) model describes

the changes in the number of susceptible, infected and recovered

(and immune) individuals. R0 can be calculated by inferring the set

of model parameters that can generate the epidemiological

dynamics most similar to those observed in the data.

Increasingly, model parameters are inferred in a Bayesian framework.

Bayesian inference finds the posterior probability distribution of

parameters, given prior information and the data. Exploring all

possible parameter combinations is intractable. The use of Markov

Chain Monte Carlo (MCMC) for Bayesian statistical inference has

enabled efficient estimation of the posterior probability distribution

when the distribution cannot be computed analytically [70].

Obtaining estimates of R0 and Tg is not always sufficient to predict

epidemic trajectory if there is significant heterogeneity between

individuals. The offspring distribution with mean R and variance σ2

describes the probability distribution of the number of secondary

infections caused by each infected individual. In compartmental

models, the offspring distribution is not explicitly specified but

follows from the specification of the model - in the case of the SIR

model it follows a geometric distribution. For certain diseases, the

offspring distribution is more dispersed than captured by the geometric

distribution [42]. In other words, most individuals cause no further

infections whereas a few individuals are super-spreaders who cause

the majority of infections. Accurate estimate of σ2 is important for

predicting epidemic outcome and assessing control measures.
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quantify evolutionary rates at within- and between-host
levels [67]. Epidemiological investigations using bacterial
genomes have also been possible. Even though bacteria
acquire point mutations at a lower rate per base than
viruses, longer bacterial genomes have provided suffi-
cient genetic resolution for phylogenetic analysis. For
example, whole-genome sequencing has been used to
refine the tuberculosis transmission network built using
contact information [21], and to investigate an outbreak of
methicillin-resistant Staphylococcus aureus in a hospital
and surrounding community in near real-time [68]. The
need for longer sequences when conducting epidemio-
logical studies of bacterial infections adds to the per-sample
cost of sequencing, and more computational resources are
required for coalescent-based inference of pathogen his-
tory. However, this latter limitation may be overcome by
only analyzing polymorphic sites if samples are similar.
Demographic reconstruction of emerging bacterial path-

ogens using coalescent-based approaches has been limited
compared to work on viral pathogens. In one such study,
the temporal changes in genetic diversity of Streptococcus
pneumoniae in Iceland were estimated based on the co-
alescent model [47]. This study was limited to a single
multidrug-resistant lineage in a single location, with
data collected over decades. Over longer evolutionary
time-scales, the accumulation of diversity through re-
combination can obscure phylogenetic relationships.
More complex evolutionary models would be required
to taken into account these genomic changes, increasing
the uncertainty surrounding demographic estimates from
genomic data.
In addition to performing analyses with longer sequences,

there is also a need to develop methods that exploit as
many sequences in the sample as possible. For population
studies, available sequences are often subsampled to re-
move individuals from the same household or in the same
close contact network to have a representative sample of
the population. Furthermore, sequences from the same in-
dividuals are often discarded, though these may be in-
formative for within-host evolution. Although some effort
has been made to link within-host to between-host evolu-
tion [52,69], the effect of within-host evolution on popula-
tion genetic inference is still not well studied. Combining
analyses across different scales could improve the accur-
acy of epidemiological predictions and provide better
mechanistic explanations of observed trends.

Conclusion
Genomic studies have contributed to better understanding
of EIDs and their spatiotemporal spread. Sophisticated
statistical methods have been developed to uncover the
epidemiological features of infectious diseases based on
the genealogy of their sequences. There is also growing



Box 2. Coalescent inference from genetic data

Just as compartmental models can be fitted to surveillance data

to infer the epidemiological dynamics of an infectious disease

(Box 1), the coalescent framework allows inference of

population history from pathogen sequences. The coalescent

model describes the statistical properties of the genealogy

underlying a small sample of individuals from a large

population. In the simplest case, the forward-time dynamics of

the population is assumed to follow the Wright-Fisher model, in

which the haploid population has discrete, non-overlapping

generations, undergoes neutral evolution, and remains the same

size [71,72]. Extensions to the coalescent have assumed more

complex population dynamics described by deterministic

population equations [73], compartmental disease models

[35], or non-parametric approaches [13,55,74,75].

Within this framework, going backwards in time, individuals in

the current generation are randomly assigned to parents in the

previous generation. If two individuals have the same parent,

then a coalescent event has occurred. Eventually, all lineages in

the sample coalesce to a single individual known as the most

recent common ancestor of the sample.

The rate of coalescence is inversely related to population size. If

the population follows the Wright-Fisher model, evolutionary

changes are selectively neutral, so the shape of the genealogy

reflects only demographic changes.
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effort to integrate genomic analysis with analysis of epi-
demiological data. In recent cases of EIDs, genomic data
have helped to classify and characterize the pathogen, un-
cover the population history of the disease, and produce
estimates of epidemiological parameters.
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