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Abstract

Many cancer genes form mutation hotspots that disrupt their functional domains or active sites, leading to gain- or
loss-of-function. We propose a mutation set enrichment analysis (MSEA) implemented by two novel methods,
MSEA-clust and MSEA-domain, to predict cancer genes based on mutation hotspot patterns. MSEA methods are
evaluated by both simulated and real cancer data. We find approximately 51% of the eligible known cancer genes form
detectable mutation hotspots. Application of MSEA in eight cancers reveals a total of 82 genes with mutation hotspots,
including well-studied cancer genes, known cancer genes re-found in new cancer types, and novel cancer genes.
Background
Single nucleotide variants (SNVs) and short insertions
and deletions (indels) are the most abundant somatic
mutations in cancer genomes. Next-generation sequen-
cing (NGS) studies have revealed that tens of thousands
of SNVs and indels may exist in a cancer genome, yet
many of them do not play important roles in tumorigen-
esis. Currently, one major challenge is to distinguish
mutations that confer a selective advantage (so-called
'driver mutations') to cancer cells from those that do not
offer such advantages ('passenger mutations') [1].
Traditionally, candidate cancer genes or mutations

have been predicted by a frequency-based approach,
where genes with many recurrent mutations are highly
ranked [2]. However, this approach suffers from several
known limitations, such as a high false positive rate, and
it often misses low-frequency yet genuine cancer genes
[3]. The recent explosion of NGS data has placed a
strong demand on bioinformatics approaches for cancer
gene prediction [4-8]. In general, current methods can be
categorized into three groups. The first group consists of
methods that assess sequence contexts, evolutionary
conservation, and the functional impact of mutations.
Representative methods of this group include SIFT [9],
PolyPhen [4], and MutationAssessor [10]. Methods in the
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second group are mainly feature-oriented. These methods
study and summarize common features from known can-
cer genes and mutations and propose data-mining algo-
rithms to rank candidate genes that resemble the features
observed in those known genes and mutations, such as
OncodriveFM [11] and OncodriveCLUST [12]. The third
group includes advanced pathway and network analyses.
These methods take advantage of functional regulations in
multi-dimensional -omics data, curated functional path-
ways and networks, and information regarding the com-
plex regulations and interactions among proteins [6,13].
Representative methods of this group include DriverNet
[8], HotNet [14], and MEMo [15]. In practice, each of the
above groups of methods has its own advantages and
shortcomings in detecting cancer genes or mutations with
unique features [7,16].
Herein, we focus on mutation hotspot patterns in

genes. Many driver mutations, especially nonsynon-
ymous ones, recurrently occur in the functional regions
of proteins (for example, kinase domains or binding
domains) [17] or interrupt active sites (for example, phos-
phorylation sites) [18]. For example, mutations residing in
the loops responsible for nucleotide binding (codons 12,
13, and 61) occur with high frequency in the RAS gene
family (KRAS, HRAS, and NRAS) [17]; mutations at co-
dons 154, 157, 158, 245, 248, and 273 of TP53 fall in the
DNA binding domain of its protein product [19]; and mu-
tations in PIK3CA form two clusters in the helical (E542K
and E545K in exon 9) and catalytic (H1047R in exon 20)
domains, respectively [20-23]. In extreme cases, many on-
cogenes are observed with highly recurrent substitutions
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that change the same amino acid, such as in the case of
the substitution of arginine at codon 132 in isocitrate de-
hydrogenase 1 (IDH1) protein [24] and the V600 mutation
in BRAF [25,26]. Although mutation hotspots have been
highly mentioned and investigated in numerous studies,
the establishment of a formal definition through quantita-
tive measurements and a systematic exploration of the
phenomenon in known cancer genes have not yet been
performed. Recently, to measure the clustering magnitude
and patterns of mutations, Tamborero et al. [12] proposed
a straightforward measurement of the magnitude of con-
vergence by counting the number of mutations divided by
the distance among mutations. In another work, Reimand
and Bader [27] applied a regression model to evaluate the
mutation rate around phosphorylation sites, arguing that
the rate is higher than that of the whole gene. Notably,
nonsense mutations often occur anywhere in the protein-
coding sequence and produce truncated proteins [28-30];
thus, nonsense mutations are not usually associated with
mutation hotspots.
To this end, we performed a mutation set enrichment

analysis (MSEA) to study mutation hotspots in genes
and hypothesized that genes with mutation hotspots
may serve as candidate cancer genes. Specifically, we in-
troduced two MSEA methods amenable to predicting
cancer genes. The first method, MSEA-clust, simulates a
walk through the sequences and renders a quantitative
measurement of the location and extent to which muta-
tions cluster. MSEA-clust is hypothesis-free, because the
convergent regions to be discovered are independent of
a priori annotations of domains or functional sites. The
second method, MSEA-domain, assesses whether a pro-
tein domain has a higher mutation rate than in the
remaining region of the protein. It requires a priori an-
notations of previously known protein domain structures
in each transcript. Accordingly, it is hypothesis-driven.
We first demonstrated the power of these two methods
using simulated data. Then, we applied them to the
Catalog of Somatic Mutations in Cancer (COSMIC)
database [31]. In particular, we investigated known can-
cer genes from the Cancer Gene Census (CGC) [32] col-
lection and found that among the 183 CGC genes that
had been detected through SNV/indel analyses in previ-
ous studies, approximately 51% can be detected through
mutation hotspot analysis, while the remaining approxi-
mately 49% of genes do not show a clear pattern of mu-
tation hotspots. The high proportion of genes with
mutation hotspots encouraged us to predict additional
cancer genes based on mutation clustering patterns.
Specifically, we applied these methods to eight cancer
types using The Cancer Genome Atlas (TCGA) muta-
tion data for cancer gene prioritization (Table S1 in
Additional file 1). We showed that both methods are
sensitive to detecting candidate cancer genes, as well
as to producing novel discoveries. Through compari-
son with OncodriveCLUST, an early method aimed at
identifying genes whose mutations are biased towards a
large spatial clustering, we further showed that our MSEA
methods had significantly reduced false discoveries.

Results
Power estimation from simulation data
An overview of MSEA is presented in Figure 1. A de-
tailed description can be found in the Materials and
methods section. We estimated the power of the MSEA
methods through simulation data in different scenarios.
For MSEA-clust, we considered the following factors
when generating simulation data: amino acid length,
mutation spanning region length, location of mutation
spanning region within the gene, the number of muta-
tions, and whether to allow recurrent mutations. The
average amino acid length of RefSeq genes is 559, with a
median value of 429 and a range between 24 (MTRNR2L1)
and 35,991 (TTN). Thus, we selected 500 for protein
length in our simulation. The mutation spanning region
length was examined at 10, 50, 100, 200, and 300. The lo-
cation of mutation spanning regions is designed to spread
across the protein sequences and ensure that all amino
acids in the protein are considered. In practice, we require
an eligible protein to have at least four amino acid changes
for MSEA analysis. Thus, we simulated mutation data with
the number of mutations per transcript as 4 and 8. In each
scenario, we generated 100 random datasets and defined
the power as the proportion of cases with pclust <0.05.
Table S2 in Additional file 1 summarizes the power es-

timation of the MSEA-clust method. Briefly, the statis-
tical power of MSEA-clust increases when the mutation
spanning regions become shorter and the number of
mutations becomes larger. Recurrent mutations improve
power. On the contrary, power is not influenced by the
location of the mutations. These results demonstrate
that MSEA-clust has the capability to detect genes with
more mutations occurring in converged gene regions, a
feature that resembles the observed mutation hotspots
in known cancer genes.
For MSEA-domain, we generated simulation data based

on the following factors: amino acid length, domain
length, domain location in the gene, mutation spanning
location, number of mutations, and recurrent mutations.
By using domain annotations from the Pfam database
[33], the SMART database [34], and the NCBI Conserved
Domain Database [35], we found that the median domain
length is 92; the average value is 136; and the range is 1 to
3,628. Thus, we selected domain lengths of 100, 200, 300,
and 400 in the simulation data. In practice, mutations
could occur in certain regions of a domain, for example,
phosphorylation sites within a kinase domain. Therefore,
we divided each domain into four even regions along the



Figure 1 Illustration of the MSEA methods. (A) MSEA-clust. The x-axis displays a schematic of the protein amino acid sequence. The red vertical
lines indicate mutations affecting the protein sequence, which in turn contribute to the mutation accumulation score (MAS, blue line, y-axis) and
mutation enrichment score (MES). (B) MSEA-domain. The top portion represents the amino acid sequence of a protein with three domains, two of
which overlap. The lower panels display the binomial representation of the M1, M2, and M3 models to interpret protein domains, for which 1 indicates
amino acids included in a domain(s), and 0 denotes amino acids not represented by a domain(s).
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domain (at positions 1 to 25%, 26 to 50%, 51 to 75%, and
76 to 100%), plus an additional scenario for mutations that
randomly occur in the whole domain. This design formed
five scenarios for each domain. For each scenario, we gen-
erated 100 random datasets, and the power was calculated
as the proportion of the cases with pdomain <0.05.
As shown in Table S3 in Additional file 1, the statistical

power of MSEA-domain increases with more mutations
or smaller domain length but is not influenced by the mu-
tations’ locations within the domains. Surprisingly, power
decreased when recurrent mutations were allowed. Several
reasons may explain decreased power with recurrent mu-
tations. Recurrent mutations are much more unlikely to
occur by themselves by chance and thus, when recurrent
mutations are present, the null model h0 tends to be sig-
nificant already (see Materials and methods). Because the
P-values in the MSEA-domain model describe whether
mutations are significantly associated with the domain
distribution (that is, whether the alternative model h1 im-
proves model fitting compared to h0), recurrent mutations
did not provide an advantage in this test. These results
indicate that MSEA-domain may not be powerful when
detecting highly recurrent mutations, for example, the
R132H mutation in IDH1.
Pan-cancer analysis: approximately 51% Mis-CGC genes
showed mutation hotspots
We applied MSEA-clust and MSEA-domain to COSMIC
data. Using an adjusted P-value <0.05 (Benjamini-
Hochberg method), MSEA-clust identified 947 signifi-
cant genes out of 18,284 eligible genes for analysis; and
MSEA-domain found 203 significant genes out of 14,224
eligible genes (Figure 2). As we aim to reveal the feasibility
of leveraging mutation hotspots in cancer gene prediction,
we specifically explored the status of the 183 Mis-CGC
genes (Additional file 2). Here, we refer to Mis-CGC genes
as those that have one or more of the following muta-
tion types: missense (SNVs), nonsense (SNVs), splice
site (SNVs and indels), or frameshift (indels), and thus, they
are eligible for mutation hotspot analysis (see Materials
and methods for details). Using MSEA-clust, 170 Mis-
CGC genes were eligible for the analysis, that is, they
had ≥4 non-silent mutations. Among them, 82 (48.2%)
genes had an adjusted P-value <0.05 (Benjamini-Hochberg
method). Using MSEA-domain, 139 Mis-CGC genes were
eligible. As shown in Figure 2, 43 (30.9%) Mis-CGC
genes were significant (Benjamini-Hochberg method ad-
justed P <0.05). Collectively, 87 of the 170 Mis-CGC
genes (51.2%) were significant (adjusted P-values <0.05),



Figure 2 Manhattan plot of COSMIC genes analyzed by MSEA-domain. Each dot represents a gene. Purple dots represent Mis-CGC genes
(see text). The horizontal red line indicates P-value =7 × 10-4, at which the FDR is approximately 0.05.
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indicating that their mutations tended to cluster in certain
sequence regions (that is, mutation hotspots). Here, we
used Benjamini-Hochberg method adjusted P-values <0.05
to define significant genes, compared with the criterion
false discovery rate (FDR) <0.2 that was applied in MSEA-
domain analysis of the eight cancers. This is because
COSMIC data were collected from previously published
studies. Due to study biases, the mutation data are highly
inflated towards those intensively studied mutations (for
example, codons 12, 13, and 61 in KRAS). Thus, we used a
stringent P-value cutoff to define significant genes.

Overview of results by MSEA-clust and MSEA-domain in
eight cancers
We applied MSEA-clust and MSEA-domain in eight
TCGA cancers: acute myeloid leukaemia (LAML), breast
adenocarcinoma (BRCA), colon and rectal carcinoma
(COAD, READ), glioblastoma multiforme (GBM), lung
squamous cell carcinoma (LUSC), ovarian serous carcin-
oma (OvCa), and uterine corpus endometrial carcinoma
(UCEC). For each cancer, we obtained six sets of empir-
ical P-values using six mutation sets (see Materials and
methods), which are 1) all non-silent SNVs, 2) deleteri-
ous non-silent SNVs, 3) all non-silent SNVs plus indels,
4) deleterious non-silent SNVs plus indels, 5) all silent
(synonymous) SNVs, and 6) all silent SNVs plus be-
nign non-silent SNVs, respectively. Figures S1 to S4
in Additional file 1 show the histograms and Q-Q prob-
ability distribution plots of the empirical P-values from
MSEA-clust, MSEA-domain M1, MSEA-domain M2,
and MSEA-domain M3 for each cancer, respectively. The
data for LAML were not included in the figure because
<50 genes were eligible for LAML analysis and the dis-
tributions formed by the small number of genes
might not be reliable. Overall, MSEA-clust and MSEA-
domain had uniformly distributed P-values in most cancer
types. Especially for MSEA-domain, the type I error was
estimated to be low, according to the Q-Q plot. For
MSEA-clust, a slight inflation existed in some cancers (for
example, BRCA, GBM, COADREAD, LUSC, and UCEC).
Thus, additional filtering is suggested, such as expertise re-
view [36].
To further assess the P-value distributions and to iden-

tify potential reasons for the slight inflation, we examined
several factors that may impact the distributions, for ex-
ample, non-silent versus silent mutations (Figures S1 to S4
in Additional file 1) and gene expression levels (Figures S5
to S8 in Additional file 1). Silent SNVs do not change
amino acid sequences and the results obtained using silent
SNVs are expected to reflect the actual situation not
related with cancer processes. In our results, the P-value
distributions obtained using silent SNVs are much closer
to the expected distribution. Especially for cancer types
where a slight inflation was observed using non-silent mu-
tations by MSEA-clust, for example, GBM, COADREAD,
and LUSC, the P-value distributions obtained using silent
SNVs are close to normal (Figures S1 in Additional file 1).
However, in BRCA and UCEC, both non-silent and si-
lent mutation sets showed skewed P-value distributions
towards 0. This could be partially explained by the re-
cent studies reporting that not only non-silent SNVs
but also synonymous SNVs are likely under natural se-
lection in human cancers [37]. Collectively, these re-
sults prompted us to take into consideration the silent
mutations when evaluating hotspots formed by non-
silent mutations, as we did in the step of background
adjustment (see Materials and methods).
Gene expression has been previously noted as an im-

portant factor associated with mutation rates across the
genome [38]. A strong correlation was reported between



Figure 3 Significant mutation hotspot genes detected in at
least two cancers. Orange: genes detected by MSEA-clust; blue:
genes detected by MSEA-domain. Genes were first ordered by the
frequency of their occurrence across cancer types, then alphabetically.
Orange or blue triangles represent whether the corresponding gene
is detected in the respective cancer type. The size or color of these
triangles does not imply the scale of significance.
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somatic mutation frequency in cancers and gene expres-
sion levels [38]. When applying MSEA-clust on non-
silent SNVs and/or indels, we found that expressed
genes had a higher proportion of significant genes (those
whose nominal P-value <0.05) than unexpressed genes
in almost all cancer types except LUSC (Figure S5 in
Additional file 1, histograms). On the contrary, for silent
SNVs and/or benign non-silent SNVs, unexpressed
genes had a higher proportion of significant genes in
all cancers except OvCa. When using MSEA-domain, the
trend is even stronger that expressed genes tend to have
a higher proportion of significant genes (Figures S6 to S8
in Additional file 1, Q-Q plot, the dark green points with
the sharp departure from the reference line in areas with
high -log10(P) values). These results collectively indicate
that gene expression is an important factor that is related
to mutation cluster patterns, where non-silent mutations
tend to cluster more frequently in expressed genes than
in unexpressed genes.
The ratio of non-synonymous SNVs versus synonym-

ous SNVs (NS/S ratio, conventionally also called dN/dS
or Ka/Ks ratio) is widely used to measure the selection
pressure of genes [39]. A higher NS/S ratio indicates a
positive selection on the corresponding gene. Here, we
adapted the concept and defined a ratio using S/NS,
that is:

S=NS ¼ # silent SNVs
# non−silent SNVs

We used this ratio mainly because, for some genes,
there are no reported synonymous SNVs, and their NS/S
ratios would be impossible to measure. Accordingly, a
lower S/NS ratio indicates a stronger selection pressure on
the corresponding gene. We plotted the S/NS ratio for
genes in different P-value intervals obtained by MSEA-
clust. As shown in Figure S9 in Additional file 1, the S/NS
ratio is significantly lower in genes with P-values <0.01 ob-
tained by MSEA-clust. This implies that the significant
genes identified by MSEA-clust, although a skewed P-value
distribution is occasionally observed, tend to be under
positive selection and are more likely to be driver genes.

Genes identified by MSEA-clust using single nucleotide
variants
Using non-silent SNVs as the working mutation data
and the silent SNVs as the background data, MSEA-
clust identified 63 significant genes whose non-silent
SNVs form mutation hotspots in 8 cancers (adjusted
P-value <0.05). Remarkably, 28 of them were CGC genes
as well (44.4%), providing a high proportion of known can-
cer genes. Here, we used all CGC genes for comparison,
instead of using only Mis-CGC genes, in order to incorpor-
ate as much a priori information as possible on cancer
genes. The detailed results of each cancer are shown in
Additional file 3. Notably, 12 genes were found in more
than one cancer type (Figure 3), and TP53 was the most
frequently observed gene found in all cancers except
LAML, followed by PIK3CA, KRAS, and CRYBG3. If using
deleterious non-silent SNVs only, MSEA-clust identified
61 significant genes, with 30 (49%) being CGC genes.
The median length of mutation spanning regions is

117 and the average value is 167, indicating that our
simulation is appropriate. The minimum region oc-
curred in genes where a mutation recurrently substitutes
the same nucleotide or amino acid. For example, the gene
IDH1 has mutations almost exclusively occurring in the
132nd amino acid (c.G395A, p.R132H); seven of eight
mutations occurring in U2 small nuclear RNA auxiliary
factor 1 (U2AF1) in LAML were substitutions at c.C101
(p.S34). Throughout this work, we use the prefix ‘c’ to
represent nucleotide changes and the prefix ‘p’ for amino
acid changes. The maximum region was observed in the
transcripts of adenomatous polyposis coli (APC), span-
ning from 189 to 1,489. By mapping the mutation span-
ning regions of each gene with known domain regions,
we found that the most frequently overlapped domains
included 'P53 DNA-binding domain' (domain name: P53;
ID: cd08367; 47 occurrences), 'Protein tyrosine kinase'
(Pkinase_Tyr; pfam07714; 13 occurrences), 'SH3_Abi1'
(Src homology 3 domain of Abl Interactor 1; cd11971;
12 occurrences), 'H_N_K_Ras_like' (Ras GTPase family
containing H-Ras, N-Ras and K-Ras4A/4B; cd04138; 8
occurrences), and 'PKc_like' (Protein Kinases, catalytic
domain; cl09925; 6 occurrences). Here, a transcript that
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is found to be significant in one cancer type is counted as
one occurrence.

Genes identified by MSEA-domain using single nucleotide
variants
Using all non-silent SNVs, a total of 32 significant genes
(229 transcripts) were identified by MSEA-domain
(adjusted P-value <0.2,), 15 (46.9%) of which were known
cancer genes from the 513 CGC genes. Here we relaxed
the P-value cutoff to 0.2 so that we could have an ad-
equate number of significant genes for hotspot candi-
dates. All three models could identify significant genes:
80 transcripts by M1, 49 transcripts by M2, and 100 tran-
scripts by M3. This indicates that mutation hotspots are
not necessarily restricted to one domain per gene. For
ease of description, we represent each gene using its most
significant transcript and found that 18 genes were de-
tected with the most significant transcript by M1, one
gene by M2 (PTEN), and 13 genes by M3. The most fre-
quently enriched gene is TP53 (all cancers). All of the
remaining genes were detected in only one cancer type.
The most frequently enriched domain by MSEA-domain
was the same by MSEA-clust: 'P53 DNA-binding domain'
(domain name: P53; ID: cd08367; 47 occurrences). The
other frequently enriched domains were 'S-adenosyl-
methionine-dependent methyltransferases' (AdoMet_
MTases; cd02440; 7 occurrences) and 'Zinc-finger double
domain' (zf-H2C2_2; pfam13465; 4 occurrences).

MSEA-clust and MSEA-domain provide complementary
results using single nucleotide variants
In total, 82 genes were identified by MSEA methods in
these cancers when using all SNVs, among which 13
(15.9%) were detected by both methods and 35 (42.7%)
were CGC genes (Table 1, Figure 4; Figure S10 in
Additional file 1). Among the 82 genes,TP53 was the most
frequently identified gene in terms of cancer types and
MSEA methods. The second most popular gene was
PIK3CA, which was found in six cancers (BRCA, COAD,
READ, GBM, LUSC, and UCEC), although it was only
identified by the MSEA-clust method (Figure 3).
By examining the genes that were detected by MSEA-

clust but not by MSEA-domain, we determined that
many had extremely convergent mutation hotspot loci.
Examples include the mutations at S34 in U2AF1 [40,41]
(LAML), R132 in IDH1 (LAML, GBM), E17K in AKT1
(BRCA), and a four-amino-acid deletion at residues 125
to 128 in TGFBR2 (NM_003242, COADREAD). MSEA-
domain failed to detect such mutations, as was con-
sistent with our observations in the simulation data of
MSEA-domain’s low power in detecting recurrent muta-
tions. For these genes, the null hypothesis (h0: the muta-
tions are not associated with the domain) was accepted
and the alternative hypothesis (h1: the mutations are
associated with the domain) was rejected. The high fre-
quency of these mutations is not related to the locations
of domain regions; however, it does not exclude the pre-
sumption that these mutations indeed converge in a re-
gion of the gene. Some other genes are missed because
they lack domain annotations, implying that MSEA-clust
has a relatively better coverage of eligible genes.
No clear explanatory pattern exists for genes that

were detected by MSEA-domain but not by MSEA-
clust. However, many have nominally significant P-values
by MSEA-clust, even though they failed multiple test-
ing corrections, for example, TP53 in LAML (nominal
pclust =0.02, pdomain =5.12 × 10-3), SMAD4 (SMAD family
member 4) in COADREAD (nominal pclust =0.016,
pdomain =1.43 × 10-5), and CDK12 (cyclin-dependent
kinase 12) in OvCa (nominal pclust =8.31 × 10-3,
pdomain =9.08 × 10-4), among others. These results further
confirmed that the two methods are complementary;
when implemented simultaneously, they could provide
better coverage and power.

Impact of mutation features on mutation hotspots
In addition to using all non-silent SNVs, we also tested
mutation hotspots using three sets of mutations: only
deleterious SNVs (deleterious missense SNVs and non-
sense SNVs), all non-silent SNVs plus indels, and dele-
terious SNVs plus indels. The null distribution was
estimated using all silent SNVs or silent SNVs plus be-
nign missense SNVs, if applicable. For MSEA-clust, six
scenarios were created for testing: non-silent SNVs ver-
sus the background formed by silent SNVs (NS/S), dele-
terious non-silent SNVs versus silent SNVs ((del NS)/S),
deleterious non-silent SNVs versus silent plus benign
missense SNVs ((del NS)/Splus), non-silent SNVs plus
indels versus silent SNVs ((NS + I)/S), deleterious non-
silent SNVs plus indels versus silent SNVs ((del NS + I)/S),
and deleterious non-silent SNVs plus indels versus si-
lent plus benign missense SNVs ((del NS + I)/Splus).
For MSEA-domain, four scenarios were created for
testing: non-silent SNVs (NS), deleterious non-silent SNVs
(del NS), non-silent SNVs plus indels (NS + I), and dele-
terious non-silent SNVs plus indels (del NS + I). In each of
these scenarios, multiple testing corrections were per-
formed independently.
The overall results of each model are summarized

in Table 1 and Table S5 and Figures S11 and S12 in
Additional file 1. Overall, the significant genes varied
among scenarios, but substantial overlap was observed.
First, for MSEA-clust, the inclusion of indel data had the
most significant impact on the number of significant genes.
The inclusion of indels contributed to a noticeable increase
of significant genes, especially for BRCA, COADREAD,
and UCEC. Second, the selection of the null distribution
did not impact the results significantly. When using an



Table 1 Significant genes identified by MSEA in eight cancers

Number of genes

LAML BRCA COADREAD GBM LUSC OvCa UCEC Union CGC

All non-silent SNVs versus silent SNVs

MSEA-clust 7 13 17 9 4 1 33 63 28 (44%)

MSEA-domain 7 7 6 6 2 3 7 32 15 (47%)

Overlap 4 2 2 4 1 1 4 13 8 (62%)

Union 10 18 21 11 5 3 36 82 35 (43%)

CGC (%) 10 (100) 10 (56) 9 (43) 8 (73) 3 (60) 2 (67) 12 (33)

Deleterious non-silent SNVs versus silent SNVs

MSEA-clust 7 10 13 9 4 2 38 61 30 (49%)

MSEA-domain 7 3 5 9 4 2 17 40 15 (38%)

Overlap 4 1 1 4 1 1 7 13 9 (69%)

Union 10 12 17 14 7 3 48 88 36 (41%)

CGC (%) 10 (100) 9 (75) 9 (53) 7 (50) 4 (57) 3 (100) 14 (29)

All non-silent SNVs plus indel versus silent SNVs

MSEA-clust 6 106 74 21 8 3 68 251 49 (20%)

MSEA-domain 8 12 10 7 3 4 8 44 16 (36%)

Overlap 3 10 5 4 2 2 6 25 11 (44%)

Union 11 108 79 24 9 5 70 270 54 (20%)

CGC (%) 10 (91) 20 (19) 15 (19) 8 (33) 4 (44) 3 (60) 16 (23)

Deleterious non-silent SNVs plus indel versus silent SNVs

MSEA-clust 7 81 49 6 2 2 33 162 40 (25%)

MSEA-domain 4 5 5 1 1 1 9 25 9 (36%)

Overlap 2 5 2 1 0 0 2 11 7 (64%)

Union 9 81 52 6 3 3 40 176 42 (24%)

CGC (%) 8 (89) 20 (25) 8 (13) 3 (50) 1 (33) 2 (67) 8 (20)
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estimated null distribution based on either all silent SNVs
or silent SNVs plus benign missense SNVs, the significant
genes by MSEA-clust did not change substantially.

Genes identified using single nucleotide variants plus indels
Genes obtained using both SNVs and indels are presented
in Figure S12 in Additional file 1. More significant genes
were identified when including indels. Among them, we
manually reviewed those non-CGC genes with potential
roles in cancer. For example, we found that gene GIGYF2
(encoding GRB10 interacting GYF protein 2) has a 3-bp
deletion (c.3693_3695del, p.1231_1232del) in 11 (6.3%)
BRCA samples (Figure S3 in Additional file 1). GIGYF2
may play a role in mediating AKT activity. Previous studies
have shown that knockdown of GIGYF2 resulted in a sig-
nificant reduction of the phosphorylation of AKT in breast
cancer cell lines [42]. Another gene of high interest is
MAP3K4, which has a 3-bp deletion (c.3566_3568del,
p.1189_1190del) occurring in 13 (7.5%) BRCA samples.
This deletion is not located in the S_TKc domain; there-
fore, MAP3K4 was only detected by MSEA-clust but not
by MSEA-domain. TGFBR2 (transforming growth factor,
beta receptor II) was found with a 10-bp frameshift dele-
tion occurring at nucleotides 374 to 383 and changing
amino acids 125 to 128 (c.374_383del, p.125_128del).

Genes with highly convergent mutations
In MSEA-clust, the mutation enrichment score (MES) is
determined by the maximum deviation of the mutation
accumulation score (MAS), which is calculated by the
minimum MAS and the maximum MAS. Accordingly,
the region between the locations of the minimum and
maximum MAS values pinpoints the most convergent
region where mutations would cluster. We specifically
examined transcripts whose maximum deviation occurred
within three amino acids. In most of these genes, the same
or the adjacent amino acids were changed recurrently in
many samples. When using SNVs only, most such genes
were known cancer genes, such as U2AF1, IDH1, and
DNMT3A in LAML (FLT3 SNVs cluster within five amino
acids), AKT1 and KRAS in BRCA, BRAF and KRAS in
COADREAD, IDH1 and PARG (poly (ADP-ribose)



Figure 4 Significant mutation hotspot genes detected by MSEA-clust or MSEA-domain in each cancer using SNVs only. Genes in red are
those included in the Cancer Gene Census (CGC) collection. Asterisks indicate genes that were only detected when using deleterious non-silent
SNVs (see main text). The scale represents P-values.
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glycohydrolase) in GBM, and KRAS in UCEC. When using
SNVs and indels, more such genes were identified. We
plotted the genes whose peak occurs within 3 amino
acids and had ≥10 SNVs and indels (Figures S13 to S16
in Additional file 1). Detailed information on these
genes, as well as all other significant genes, is provided
in Additional files 3 and 4. Due to the limited accuracy
of computationally predicted indels from NGS plat-
forms, from which our data were derived, we refrained
from highlighting the genes with high confidence. Rather,
these genes can be experimentally validated or their func-
tion can be explored in the future.

Informative genes identified by mutation set enrichment
analysis
Beside the known cancer genes in those genes identified
by MSEA, there were also novel discoveries, such as new
gene-cancer type pairs and novel mutation patterns pre-
viously unreported. Some genes had been previously
implicated in cancer but were re-found within our re-
sults in different cancer types. For example, ABI1 and
TRIM33 were both known cancer genes and were in-
cluded in the CGC list, but their mutation patterns in
UCEC have been rarely reported, even in the most re-
cent comprehensive studies [16,43] (Figure 5). There are
also genes that had been previously studied for their
gene expression changes in cancer but whose mutation
patterns had not been explored. For example, the altered
expression of gene ATP11B (encoding ATPase, class VI,
type 11B) is associated with cisplatin resistance in ovar-
ian cancer [44]. Here we revealed that its mutations
clustered around its E1-E2 ATPase domain (Figure 5).
We also found that FZD6, a critical gene in the WNT
pathway, had mutations clustered in its Frizzled domain
in UCEC (Figure 5). In OvCa, although only three genes
were significant by MSEA methods, CUL9, which en-
codes an E3 ubiquitin ligase that binds to p53 [45], was
identified with mutation clustering in the cullin domain.
Put together, our results complemented the previous un-
derstanding of cancer genes [16,36,43] by quantitatively
pinpointing mutation hotspots, predicting new gene-
cancer type pairs, and providing alternative insights.

Comparison with other tools
To assess the performance of MSEA-clust and MSEA-
domain through a comparison to similar tools, we im-
plemented the software OncodriveCLUST [12] on the
same simulation data and the same datasets of the eight
cancers used for MSEA, respectively. OncodriveCLUST
is one of the earliest tools to detect mutation clusters. It
assumes unbalanced baseline mutation rates across all
gene positions and computes a clustering score based
on the proportion of mutations within a cluster and
the distances among mutations. During the process of
OncodriveCLUST, positions with a number of mutations
above a background rate threshold were identified as
potential cluster seeds. The threshold was computed
according to binomial distribution and gene length. Be-
cause of this feature, our simulation data with no recur-
rent mutations were found ineligible for OncodriveCLUST
analysis; otherwise, no meaningful seeds would be iden-
tified, that is, all positions failed the background rate.
Thus, we could only perform the comparisons using
simulation data with recurrent mutations. As shown in
Figure S17 in Additional file 1, OncodriveCLUST dis-
played reduced power in all scenarios compared with
MSEA-clust or MSEA-domain. For all simulated genes, if
OncodriveCLUST successfully identified a seed position
that passed the background mutation rate, it could easily
identify the mutation cluster around the position; however,
if no such positions were found, OncodriveCLUST failed
to detect the hotspot even if four mutations changed four
continuous amino acids. On the contrary, MSEA, espe-
cially MSEA-clust, could detect mutation hotspots regard-
less of recurrent mutations.
We applied OncodriveCLUST to the same dataset of

eight cancer types with consideration of mutation pat-
terns, as previously used for MSEA; for example, all non-
silent SNVs versus silent SNVs and all non-silent SNVs
plus indels versus silent SNVs. OncodriveCLUST identi-
fied a range of 0 to 323 significant genes (q-value <0.05)
per cancer type using SNVs, compared with 1 to 33 by
MSEA-clust and 2 to 7 by MSEA-domain. When using
SNVs plus indels, the numbers of genes were 19 to 1,014 by
OncodriveCLUST, 3 to 106 by MSEA-clust, and 3 to 12 by
MSEA-domain. Although there is no gold standard gene
list to evaluate both tools, the range of significant genes by
OncodriveCLUST seems to be abnormally high. We thus
compared the significant genes from OncodriveCLUST and
those from MSEA with CGC genes, respectively. As shown
in Figures S18 and S19 in Additional file 1, although
OncodriveCLUST identified many more genes than MSEA
(except in LAML and OvCa), MSEA results showed higher
precision in all cancer types than those obtained by
OncodriveCLUST. Furthermore, the histogram plots of
OncodriveCLUST results implied an inflation of the type I
error (Figure S20 in Additional file 1) in all cancer types.
These results showed that our MSEA methods performed
equally well, if not better, as previously reported methods,
and MSEA promises greatly reduced FDRs.

Discussion
The explosive growth in the number of somatic muta-
tions reported in cancer genomes has placed a high
demand on the development of computational tools that
can help researchers and clinicians extract and interpret
information about the candidate mutations and genes
underlying tumorigenesis. In this study, we leveraged the



Figure 5 Example MSEA-clust output for four candidate genes. In each panel, the top portion shows the MAS score (y-axis) by the MSEA-clust
method (see Materials and methods); the bottom part shows the mutation distribution (black triangles) across domains (red/cyan boxes) in the transcript
(x-axis). (A) ATP11B in UCEC. (B) FOXA1 in BRCA. (C) FZD6 in UCEC. (D) POLE in UCEC.
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observation of mutation hotspots in known cancer genes
to prioritize candidate cancer genes. We proposed two
methods based on genes’ mutation clustering patterns,
MSEA-clust and MSEA-domain. Through our demon-
stration of these methods in the COSMIC data and CGC
genes, we found that in approximately 51% of Mis-CGC
genes, somatic mutations form major clusters that are dis-
tinguishable and verify the rationale to prioritize cancer
genes based on mutation hotspots. We next applied these
methods to data generated from TCGA, encompassing
somatic mutations from eight major cancers. Our results
highlighted well-established cancer genes and nominated
novel candidates. These methods provide valuable tools for
future cancer gene studies.
The two methods are complementary to each other.

MSEA-clust is more sensitive to detecting genes with
highly recurrent mutation hotspot loci (for example,
PIK3CA and IDH1). Such mutations are not detectable by
the MSEA-domain method, because the high occurrence is
significantly unexpected in random data, regardless of the
domain regions. MSEA-clust also has better coverage on
proteins that lack domain annotations or proteins in which
the substitutions occurred outside of domain regions
(for example, MAP3K4 and MEF2A (Myocyte enhancer
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factor 2A) in BRCA). On the contrary, MSEA-domain
is hypothesis-driven and provides a better interpretation
of the resultant genes, since most domains are known
for their functions. For example, MSEA-domain can be
extended for scenarios where regions are defined using
biological functional units, such as protein pockets [46],
protein secondary structure units [47,48], or regulatory
regions (for example, promoters, untranslated regions).
In practice, we suggest the user apply both methods
and combine the results, in order to find all possible
mutation hotspots. However, the user with a specific
interest can apply only one of the methods.
The proposed methods have several limitations. First,

in the results from MSEA-clust, there appears to be a
relatively higher type I error in some cancers, such as
COADREAD, GBM, and UCEC (Figure S1 in Additional
file 1). The reason for this occurrence remains unknown.
Previous studies have shown that replication timing and
gene expression are two major reasons for an unbal-
anced gene-wise mutation rate, for example, genes lo-
cated in late replication regions have higher mutation
rates [49]. We manually examined our results but did
not find an overrepresentation of such genes (for ex-
ample, CSMD3 and TTN [38]) in our list, implying that
replication timing may not play an important role in
generating 'mutation hotspots' within gene coding re-
gions. This assertion is reasonable, because replication
timing typically affects a large genomic region in the
chromosome, and it is unlikely that a small region in a
gene has different replication timing from other regions
in the same gene. Previous works also state that manual
filtering is necessary in cluster-based approaches to
avoid apparent false discoveries [36]. Even with potential
inflations, MSEA-clust nominates candidate genes that
may have been missed by the MSEA-domain method,
many of which are known CGC genes. Second, not all
SNVs and indels used in this work have been experi-
mentally validated, for example, through Sanger re-
sequencing. False positive mutations likely exist due to
sequencing errors or mapping errors. For example, the
3-bp deletions in GIGYF2 and MAP3K4 in BRCA were
not validated. Detection of short indels from NGS data
tend to have high false positives [50]. In practice, a high
quality list of mutations is required to warrant the validity
of MSEA results, and caution should be used during
follow-up analysis. Nevertheless, the combined list of
genes identified by both MSEA methods provides a short
list of promising candidate genes. Finally, MSEA methods
do not take into consideration the mutation hotspots
formed by gene fusion breakpoints or that occurred in
regulatory regions (for example, promoter, untranslated
region, enhancer, and so on). Such information has not
been made publically available, as for SNVs and indels,
because most NGS data currently available are based
on whole exome sequencing. Since the cost of whole
genome sequencing is close to $1000 per genome, nu-
merous whole genome sequencing data will be gener-
ated in the near future. Accordingly, MSEA can be
extended by considering data such as gene fusion or regu-
latory information.
Of note, a mutation clustering pattern is one import-

ant feature observed in known cancer genes. MSEA de-
tected approximately 51% Mis-CGC genes, while the
remaining approximately 49% of genes did not show
a clear pattern of mutation hotspots. However, other
known features exist in cancer genes. For example, many
known cancer genes tend to have an overrepresentation
of functionally deleterious mutations [11] or positive
selection pressure (for example, a high ratio of non-
synonymous versus synonymous SNVs) [39]. Approaches
based on these features are also expected to provide more
comprehensive candidate gene lists. In addition, the inclu-
sion of other types of somatic mutations, such as somatic
copy number variations [51] and translocations, will also
nominate candidate cancer genes [38]. Furthermore,
tumor suppressor genes are often interrupted by nonsense
mutations that could occur anywhere across the gene, and
these mutations typically do not form hotspots [20,52].
Thus, MSEA will likely perform poorly in detecting tumor
suppressor genes.
Finally, the prioritized candidate genes and their muta-

tions in no way guarantee a 'driver' role of the gene in
cancer. Follow-up experimental validation is required to
verify the functional impact of the mutations or genes in
the corresponding cancer(s). We attempted to interpret
the candidate genes for their potential prognostic roles.
Indeed, we found several genes with significant prognos-
tic impact on overall survival, such as NPM1, RUNX1,
and TP53 in LAML, and PIK3CA, TP53, and PTEN in
UCEC. Most are well-studied cancer genes. For many
novel genes detected by MSEA, they were only mu-
tated with low frequency in the population and did
not provide a sufficient number of samples for survival
analysis. Thus, future functional analysis is needed to
validate and unveil the potential roles of these candi-
date genes.

Conclusions
By focusing on somatic SNVs and indels, we proposed
two novel methods to detect candidate cancer genes
whose somatic mutations tend to form mutation hotspot
regions. We explored the prevalence of mutation hot-
spots in known cancer genes, demonstrated the MSEA
approaches in simulated data, and applied them to eight
major cancers from TCGA. Our results not only con-
firmed known cancer genes but also proposed a list
of novel candidate genes. Due to the limited data we
analyzed, future work is warranted for performance
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evaluation, method enhancement, and functional valid-
ation of novel genes.

Materials and methods
Cancer somatic mutation data from COSMIC
We downloaded somatic mutation data from COSMIC
(v65, May 20, 2013) [31], a public database that curates
somatic mutation information related to human cancers.
The downloaded file included 1.15 million lines of data.
To avoid redundancy, we defined a mutation (uniquely
tagged by a 'mutation.ID' in COSMIC data) in a sample
('Sample.name') as a singular, unique mutation record
and kept only one copy of the record. A mutation (for
example, T790M in EGFR) could appear in multiple mu-
tation records corresponding to multiple samples. Re-
cords with unknown amino acid changes, no genomic
positions (GRCh37), or no detectable mRNAs/proteins
were excluded. Silent mutations were also excluded. This
process resulted in a total of 841,207 non-silent muta-
tion (nonsynonymous SNVs and indels) records for the
following analysis.
We downloaded the CGC gene list (December 04, 2013)

for known cancer genes [3,53]. The CGC database cata-
logues genes with causally implicated mutations in cancer.
In our work, a total of 513 CGC genes were down-
loaded. A close inspection of the mutation types in-
volved in these genes showed that more than 60% of
genes were found with mutations in the form of ampli-
fication, large deletion, or translocation. As we focus on
SNVs and indels in this study, we selected those genes
that have one or more of the following mutation types:
missense (SNVs), nonsense (SNVs), splice site (SNVs
and indels), or frameshift (indels). The application of this
filtering rule resulted in 183 (35.7%) CGC genes that were
eligible for mutation hotspot analysis (Additional file 2).
We denoted these genes as Mis-CGC genes, short for
'missense SNV,' which is the most prevalent mutation
type in these genes.

Cancer somatic mutation data from eight TCGA cancers
We retrieved somatic mutation data for eight cancers
from TCGA [43]: acute myeloid leukaemia (LAML),
breast adenocarcinoma (BRCA), colon and rectal carcin-
oma (COAD, READ), glioblastoma multiforme (GBM),
lung squamous cell carcinoma (LUSC), ovarian serous
carcinoma (OvCa), and uterine corpus endometrial car-
cinoma (UCEC). Colon and rectal carcinomas were
merged as one dataset for all the analyses in this
study. The original work annotated mutation data using
ENSEMBL (version 69) [43]. We updated the functional
annotations of mutations using NCBI RefSeq imple-
mented by ANNOVAR [54]. Domains and their loca-
tions in each transcript of a gene were downloaded
from the NCBI ftp [55]. All ID mapping and
conversions were implemented in the R software [56],
based on annotation data available at the UCSC Gen-
ome Browser [57]. Because different transcripts of the
same protein may have different mutation and domain an-
notations, we took each transcript as a unit, unless other-
wise specified.
The somatic mutation data used in our work in-

cluded somatic SNVs and indels. Throughout this
work, we categorized SNVs into silent SNVs and non-
silent SNVs. Silent SNVs are synonymous SNVs; non-
silent SNVs include missense and nonsense SNVs. For
missense SNVs, we used SIFT [9], PolyPhen-2 [4], and
MutationAssessor [58] to predict their functional im-
pacts. In particular, if a missense SNV is predicted to
be deleterious by any of the three tools, it is defined
as a deleterious missense SNV; otherwise, it is consid-
ered a benign or tolerable missense SNV. For indels,
we considered all as non-silent, regardless of whether
they caused frameshift or not. We then created differ-
ent groups of mutations based on their functional im-
pacts for hotspot detection.
In addition to mutation data, microarray gene expres-

sion data for these eight cancer types were obtained from
the Cancer Cell Line Encyclopedia [59]. For each cancer,
we extracted the cancer tissue-relevant gene expression
profile, based on the description of the primary site, hist-
ology, and histology subtypes for each cell line [59]. The
median gene expression (measured by the normalized ro-
bust multi array (RMA) value) across all cancer-relevant
cell lines was computed for each gene in each cancer.
Genes with an RMA >5 were designated as expressed in
the corresponding cancer type [40]. Alternatively, some
of the tumors used in our work have matched RNA-
sequencing data, as provided by the TCGA data portal.
These data can also be used to define expressed genes in
future work. Table S1 in Additional file 1 summarizes the
data used in this work.

Mutation set enrichment analysis based on mutation
clusters: MSEA-clust
In MSEA-clust, we modified the Kolmogorov-Smirnov
test to detect the clustering patterns of mutations along
a gene transcript. MSEA-clust simulates a walker walk-
ing through the amino acid sequence of a transcript
while keeping record of an assessment value, which
changes according to the occurrence and frequencies of
mutations (Figure 1). The largest variation of the assess-
ment value is indicative of both the location and the
magnitude of the clusters formed by mutations. There
are four steps in MSEA-clust, as described below.

Step 1: calculation of a mutation enrichment score
We define a MAS as the assessment value. MAS is a
vector of length L, where L is the amino acid length of
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the transcript. Starting with 0, MAS is recorded at each
position while we walk down the sequence of the tran-
script, and the ith element of MAS is the assessment
value for the ith position. MAS increases when we encoun-
ter a mutation and decreases at non-mutated positions. As
aforementioned, a mutation record refers to a mutation in
a sample; thus, at the ith position, there could be multiple
mutation records, referring to multiple samples in which
the mutation occurs. We define a vector Y of length L to
indicate the number of mutation records at each position,
that is, Y = (y1, …, yL). Specifically, for locations where no
mutation occurs, yj =0. We also define a vector LM to rec-
ord the positions where any mutation occurs. The magni-
tude of increment and decrement of MAS is computed by
Sinc =1/(Number of mutation records) =1/∑Y, and Sdec =1/
(Number of non‐mutated positions), respectively. Here, the
sum of increment equals the sum of decrement, both of
which are 1. The increment at a mutated position is calcu-
lated by yj × Sinc, where 1 ≤ j ≤ L and j ∈ LM. The decrease
at all non-mutated positions is always Sdec. Thus, MAS at
the ith position is calculated by:

MASi ¼
X

j∈LM ; j≤i

yj � Sinc −
X

j∉LM ;j≤i

Sdec

where 1 ≤ i ≤ L. Based on the definitions of incre-
ment and decrement, we have MASL =0. Therefore,
MAS bridges between 0’s at the starting and ending
positions, with an expectation of a sharp increment
within a short distance in the sequence regions where
many mutations cluster. Accordingly, the maximum
departure observed in the recorded value MAS will
indicate where mutations cluster. We thus define the
MES as the maximum deviation of MAS across the
transcript (Figure 1):

MES ¼ max MASð Þ−min MASð Þ

Step 2: statistical significance test We estimate the
significance of MES using a randomization-based test.
Given a transcript, we randomly select the same number of
true mutation records across the amino acid sequence of
the transcript in each randomization process, allowing for
replacement. The rationale behind the allowance of re-
placement is to incorporate recurrent mutations. For the
randomly selected mutations, a MES is computed follow-
ing step 1 and denoted as MES(π). The randomization
process is implemented a total number of 10 × L times
to ensure a sufficient shuffle. The resultant MES(π) values
form a null distribution of MES for a given transcript
expected at random. Based on this method, a normalized
MES, denoted as NES, as well as an empirical P-value, can
be computed by:

NES ¼ MES −mean MES πð Þð Þ
sd MES πð Þð Þ and p ¼ MES πð Þ≥MESf g

1þ 10� L

In this way, the NES for each transcript is independent
of its number of mutations or its amino acid length, and
thus, different transcripts are comparable to each other.
Depending on the intended purposes, the NES value is
mainly used for significance estimation, while the empir-
ical P-values are mainly used for the measurement of
overall inflation.

Step 3: background adjustment and null distribution
estimation We propose two strategies of background
adjustment. The first strategy is a unit-based mutation
hotspot adjustment. For each transcript unit, we test for
its potential mutation hotspots using 1) non-silent muta-
tions and 2) silent mutations. If a transcript’s silent muta-
tions form any mutation hotspots at nominal significance
(nominal P-value <0.05), the hotspots formed by non-
silent mutations of this transcript will not be considered
significant.
Second, we estimate the null distribution of NES using

two background SNV sets. The first background set
includes all silent SNVs. In contrast, missense SNVs,
nonsense SNVs, and indels are considered non-silent
mutations and are used for hotspot detection. The second
background set includes all silent SNVs plus benign mis-
sense SNVs (see 'Cancer somatic mutation data from eight
TCGA cancers' section). Accordingly, deleterious missense
SNVs, nonsense SNVs, and indels are considered non-
silent mutations for hotspot detection.
To accurately estimate the null distribution of NES,

we pool the NES obtained by background mutations for
all genes. The empirical null distribution is a normal dis-
tribution with empirically estimated mean and standard
deviation. We used the locfdr package in R to obtain the
estimation. Specifically, the following steps are imple-
mented: 1) NES values obtained using background mu-
tations are median-centered and used for the estimation
of the mean and standard deviation of the null distribution
f0 using maximum likelihood iteration; 2) NES values ob-
tained using non-silent mutations, which are also median-
centered, are then adjusted using the mean and standard
deviation of f0 from step 1, resulting in normalized
z-scores; and 3) nominal P-values are computed based on
the normalized z -scores.

Step 4: adjustment for multiple testing We use the
Benjamini-Hochberg method [60] to control for a FDR.
Genes with an adjusted P-value <0.05 are considered
significant, unless otherwise specified.
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Mutation set enrichment analysis based on domain
mutation rate: MSEA-domain
MSEA-domain extends a generalized linear regression
model to examine whether the incidence of mutations is
in association with a pre-defined domain. Assuming mu-
tations occur in a gene with a background mutation rate
μ, the incidence of mutation events is generally assumed
to follow a Poisson distribution:

P y; μð Þ ¼ μy exp −μð Þ
y!

where y is the number of mutations. When a domain
has a higher mutation rate than the remaining regions of
the gene, more mutations will be observed in the do-
main than in other regions, and it is expected that the
unbalanced mutation will be detectable. Based on this
hypothesis, we developed MSEA-domain to test whether
a domain(s) has an abnormal mutation rate by formulat-
ing a regression model. In this model, the dependency
between mutation events and the predictors is expressed
as E(Y|X) = exp(β0 + β1X), or ln(E(Y|X)) = β0 + β1X, where
Y is a vector representing the number of observed muta-
tions at each position along the transcript, and X is the
domain indicator. Both Y and X have a length of L; here
L is the amino acid length of the transcript. In the vector
X, only values 0 and 1 are allowed, where 0 indicates
that a position does not belong to a domain and 1 indi-
cates that the position is included in the domain. Con-
sidering that the domain structure of a protein can be
very complex - for example, multiple domains may co-
exist and overlap with each other in a transcript - we de-
signed three models for X (Figure 1). In model 1 (M1),
each domain is tested independently, and a transcript
has multiple P-values, one for each domain. In model 2
(M2), overlapping domains are merged and denoted as
a single 'domain region'. Each domain region is then
examined, and a transcript has multiple P-values, one
for each domain region. In model 3 (M3), all domains
are denoted as regions of interest, and each transcript is
tested only once, resulting in one P-value.
To test whether mutations are associated with the

domains in a transcript, we designed the null model
as h0: E(Y|X) = exp(β0), and the alternative model as:
h1: E(Y|X) = exp(β0 + β1X). In practice, due to the sparse-
ness of mutation data, many positions in a transcript do
not harbor any mutations, and the data are zero-inflated.
Therefore, we utilized the negative-binomial distribution
to replace the Poisson distribution. A log-likelihood ratio
test was employed to compare the null model h0 and
the alternative model h1. For each transcript, the lowest
P-value among tests of M1, M2, and M3 was selected
to represent the transcript level P-value.
Software availability
The code and data used in this work are available at
GitHub [61] and our website [62].
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