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Abstract

Background: IntClust is a classification of breast cancer comprising 10 subtypes based on molecular drivers
identified through the integration of genomic and transcriptomic data from 1,000 breast tumors and validated in a
further 1,000. We present a reliable method for subtyping breast tumors into the IntClust subtypes based on gene
expression and demonstrate the clinical and biological validity of the IntClust classification.

Results: We developed a gene expression-based approach for classifying breast tumors into the ten IntClust subtypes
by using the ensemble profile of the index discovery dataset. We evaluate this approach in 983 independent samples
for which the combined copy-number and gene expression IntClust classification was available. Only 24 samples are
discordantly classified. Next, we compile a consolidated external dataset composed of a further 7,544 breast tumors.
We use our approach to classify all samples into the IntClust subtypes. All ten subtypes are observable in most studies
at comparable frequencies. The IntClust subtypes are significantly associated with relapse-free survival and recapitulate
patterns of survival observed previously. In studies of neo-adjuvant chemotherapy, IntClust reveals distinct patterns of
chemosensitivity. Finally, patterns of expression of genomic drivers reported by TCGA (The Cancer Genome Atlas) are
better explained by IntClust as compared to the PAM50 classifier.

Conclusions: IntClust subtypes are reproducible in a large meta-analysis, show clinical validity and best capture variation
in genomic drivers. IntClust is a driver-based breast cancer classification and is likely to become increasingly relevant as
more targeted biological therapies become available.
Background
The classification of breast tumors based on morphology
(histological type and grade) and two key markers, estro-
gen receptor (ER) and human epidermal growth factor re-
ceptor 2 (HER2), remains the mainstay of current clinical
practice. Early attempts to improve this situation by using
genomic technology focused on data-driven methods in-
cluding unsupervised transcriptome-based classification
[1-3] and gene signatures trained against a specific clinical
outcome [4-6]. However, this approach is not based on
the underlying molecular changes which ultimately consti-
tute a tumor’s oncogenic drive. More recent genomic
studies have begun to reveal the complexity of the
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landscape of somatic alterations in breast cancer at the
levels of mutations and copy number alterations (CNAs)
[7-12]. The strategy for discriminating between driver and
passenger events amongst these somatic alterations has,
for non-synonymous mutations, focused on identification
of genes more frequently mutated than expected by
chance in a given collection of tumor samples. Although
this approach has required some adjustment owing to the
non-random background mutation rates in cancer ge-
nomes [13] and may be complemented by accounting for
the pattern of mutational distribution within genes [14], it
does provide a roadmap for the comprehensive identifica-
tion of all driver mutations if a sufficiently large sample
size is interrogated [15]. In the case of CNAs, an add-
itional strategy has been to integrate genomic and tran-
scriptomic data in order to identify areas of recurrent
alteration associated with deregulated gene expression
(expression quantitative trait loci (eQTLs)) [16-18]. Im-
portantly, the balance between somatic mutations and
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alterations in copy number has been investigated as part of
the The Cancer Genome Atlas (TCGA) pan-cancer analysis
of 12 tumor types [19]. Investigation of a shortlist of ‘se-
lected functional events’ revealed an approximately inverse
relationship between mutation and CNAs with some tumor
types dominated by mutations deemed ‘M-class’ (for ex-
ample, renal cell carcinoma and colorectal adenocarcin-
oma), while others were dominated by CNAs deemed ‘C-
class’ [19]. Prototypical ‘C-class’ tumor types were ovarian
and breast cancer. This analysis highlights the need for a
classification scheme based on the pattern of somatic driver
alterations in a particular tumor, which, in the case
of breast tumors, is dominated by CNAs. Using the lar-
gest sample collection with extensive genomic, tran-
scriptomic and clinical annotation in existence, we
previously described a scheme for classifying breast tu-
mors into 10 subtypes based on the pattern of CNAs
which exert a concordant effect on gene expression in
cis (eQTLs). This classification was named IntClust
owing to the clustering of tumors based on the integra-
tion of genomic and transcriptomic data [20] to find
probable driver events [17]. The scheme remains the
only genome-wide driver-based classification of breast
cancer that reconciles tumor genomes with their tran-
scriptomes and, as such, has significant potential for ra-
tional patient stratification [21]. Further validation of
the clinical and biological significance of this approach
requires a reliable method to subtype tumors in inde-
pendent cohorts assayed on different platforms. This is,
in part, due to the relative scarcity of studies for which
both high-resolution copy-number and transcriptomic
data are available, since the classification requires both
data types. Here, we have overcome this hurdle by de-
veloping a flexible method for tumor subtyping which
only requires gene expression data and is not limited to
specific platforms. This gene expression-based classifier
has enabled us to investigate the IntClust classification
in the numerous translational studies for which tran-
scriptomic and clinical data are publically available.
Here, we report on the reproducibility of IntClust sub-
types, their clinical validity and the extent to which they
capture the landscape of somatic driver alterations in
breast cancer using these external independent studies.

Results
Characteristic gene-expression profiles for assignment to
IntClust subtype
We used the dataset in which the IntClust subtypes
were originally discovered (N = 997) to train a gene
expression-based classifier. The selected genes corre-
sponded to particular cis eQTLs which were in the ori-
ginal clustering algorithm [17]. A panel of 612 genes
(some represented by more than one probe) were
used for subtype assignment. They represent all gene
expression features identified using integrative cluster-
ing [20] in the original study [17]. Based on these 612
genes, characteristic patterns of expression observed be-
tween subtypes provided a template by which new sam-
ples could be classified using Prediction Analysis of
Microarrays (PAM) software [22]. This method was de-
signed to account for differences in platform and in-
cludes some redundancy such that it can accommodate
missing genes by retraining the algorithm against the
index dataset for optimal subtype assignment. This is
achieved by re-estimation of centroids for each of the 10
clusters by comparison to the METABRIC discovery
dataset based on the available feature (gene) set in a par-
ticular study. These newly estimated centroids are then
used for subtype assignment. In order to evaluate the
accuracy of this classifier we applied it to the samples of
the original IntClust validation study (N = 983). These
samples had previously been classified using the com-
bined feature set of a combination of gene expression
(Illumina HT-12 v3 platform) and copy number (Affy
SNP 6.0 arrays). Assignment based on the expression
classifier was concordant with combined CNA-gene ex-
pression classification in 98% of samples (Figure 1A),
demonstrating the efficacy of the approach. We also
evaluated the influence of using all 714 probes (some
genes were represented by more than one probe) com-
pared to 612 genes (each represented by one probe)
using samples from the METABRIC validation study.
These data, depicted as a cross-tabulation in Additional
file 1, show that 94.7% of 983 samples were concor-
dantly classified. We applied this expression-based
method to external independent datasets available in
public repositories (Additional file 2) on a study-by-
study basis, which in total included 7,544 breast tumors.
We found that the characteristic patterns of gene
expression were highly reproducible within the majority
of studies. Figure 1B illustrates the characteristic gene
expression profiles of the features used for IntClust clas-
sification by each subtype for both the index dataset
and, for comparison, RNA-seq samples from the TCGA
breast cancer marker paper [8] classified using our
method. The depicted profiles represent an average of
all samples within a particular subtype. In order to con-
firm that the gene expression profile of each IntClust
subtype was underpinned by characteristic CNAs, we
plotted the copy number profiles of the TCGA samples
which had been assigned an IntClust subtype based on
gene expression (Additional file 3). These subtype CNA
profiles were similar to those in the original METABRIC
study (Additional file 3). Correlation statistics between
copy number profiles of METABRIC and TCGA samples
within IntClust subtypes were computed and are pre-
sented in Additional file 4. These correlations between
TCGA samples within one IntClust group compared to all
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Figure 1 Reproducible IntClust gene expression profiles enable accurate classification. (A) Cross-tabulation of IntClust subtypes classified
according to the combined (copy number and gene expression) classifier and the expression-based classifier in the METABRIC validation dataset
(N = 983). Intensity of box colors is proportional to the depicted value. (B) Comparison of average gene-expression profiles for all 10 IntClust
groups in the METABRIC discovery set (left) and TCGA samples (right). The x-axis is genomic position and the y-axis is z-score log2-normalised
gene expression level. (C) Scatter plot of the goodness of fit, number of samples and number of available features for expression-based IntClust
classification by each study. GOF, goodness of fit.
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METABRIC IntClust groups consistently show that the
highest correlation was between samples of the same
IntClust subtype.
In order to quantify the efficacy of our method by study,

we used a correlation statistic to estimate the goodness of
fit of the classification model where a score of 1.0 indi-
cates perfect correlation between the gene expression
profiles of new samples and those contained within the
index dataset. Figure 1C depicts the correlation (goodness
of fit) statistics, number of samples and number of fea-
tures (of a possible 714) for every study. This comparison
of average gene expression profiles by subtype indicates a
striking conservation of patterns across studies with the
average correlation being 0.69. The highest correlation of
0.95 was, as expected, associated with the METABRIC val-
idation dataset. The next highest correlation of 0.92
related to RNA-seq samples from TCGA. The lowest cor-
relation was a significant outlier among studies at 0.1. Al-
though it was not possible to definitively determine the
basis for this poor correlation, we note that the distribu-
tion of ESR1 and ERBB2 expression was not bimodal for
this study and, in general, there appeared to be a low
signal-to-noise ratio. The Pearson’s correlation coefficient
between goodness of fit and number of samples per study
was 0.53 and between goodness of fit and number of fea-
tures per study was 0.38. As a comparator, we also classi-
fied samples into the ‘intrinsic subtypes’ using the PAM50
classifier [23] and into four molecular subtypes based
on three genes (ESR1, ERBB2 and AURKA) using the
SCMGENE classifier [24]. We evaluated the effect of plat-
form variability on subtype assignment by using 475 sam-
ples from the TCGA study for which gene expression data
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had been collected using both RNA-seq and microarrays.
Cross-tabulations of subtype assignment with Kappa-
agreement statistics, by data type (RNA-seq or microarray)
for each of the three classifiers (SCMGENE, PAM50 and
IntClust) are presented in Additional file 5. The agreement
between classifiers was 93.1% for SCMGENE, 93.7% for
PAM50 and 81.3% for IntClust. It should be noted that the
number of possible classes significantly influences the rate
of concordance for a classification. The expected agreement
by chance alone for SCMGENE (four groups) was 29.8%,
for PAM50 (five groups) was 33.2% while for IntClust (ten
groups) was 12.0%. Similarly, when interpreting the import-
ance of discordantly classified cases, the number of possible
classes should be taken into account since the relative dif-
ference between classes is likely to be smaller for a classifi-
cation comprising a larger number of possible groups.
We also applied our classifier to a large panel of cell

lines from two data repositories (Sanger COSMIC data-
base and the Cancer Cell Lines Encyclopedia (CCLE)). We
applied three versions of our classifier to these data: copy
number data alone, gene expression alone and the com-
bined copy number/gene expression feature set. The
goodness of fit statistics for these classifiers are depicted
in a scatter plot in Additional file 6. Overall, the copy
number-based classifier performed better than the
expression-based or combined classifier. The ensemble
goodness of fit for the copy number-based classifier was
0.74 using the Sanger dataset and 0.75 using the CCLE
dataset, compared with the ensemble average goodness of
fit for the expression-based classifier, which was 0.47 using
the Sanger dataset and 0.62 using the CCLE dataset. These
differences may be due to variation in culture conditions
and passages, which are more likely to be reflected in gene
expression than in CNAs. Weighted scatterplots depicting
cell line classification according to classifier type and by
dataset are presented in Additional file 6. Similarly, com-
parison of classification between PAM50 and SCMGENE
datasets are depicted in Additional file 7. There was con-
siderable variability in subtype assignment for cell lines ac-
cording to the origin of the data for all classifiers. This
highlights the challenge of reliable cell line classification,
which is likely due to drift over time and variability in cell
culture conditions. Our findings show that, on average,
copy-number profiles of cell lines are more similar to pri-
mary tumors than gene expression profiles and ought to be
preferentially used for their classification into molecular
subtypes. Details of molecular subtype assignment for each
cell line by data source are presented in Additional file 8.

IntClust subtypes are reproducible entities observable
across studies
The platform and feature flexibility of our classifier en-
abled the classification of a large collection of independent
samples. For comparison we also classified tumors into
the ‘intrinsic’ subtypes using the PAM50 and SCMGENE
classifiers [23,24]. The relative proportions of the 10
IntClust subtypes were similar across studies, including
the CNA-devoid IntClust 4 group (Figure 2A) where the
relative proportion ranged from 33% in the MDA4 study
to 11% in the MCCC study, and all 10 subtypes could be
identified in all but 6 of 42 studies. In three of these six
studies, all ten subtypes except IntClust 2 could be identi-
fied. This is not surprising since in the original METABRIC
study IntClust 2 is the least frequent of the 10 subtypes,
comprising just 4.5% of tumors in the discovery dataset.
A subset of patients in some of the studies received

neo-adjuvant (before definitive surgery) chemotherapy,
and tissue would have been derived from biopsies or
fine needle aspirates. Here, we note that based even
on these samples, IntClust subtype could be reliably
assigned and resulted in proportions comparable to
those from studies in patients who did not receive neo-
adjuvant chemotherapy (Figure 2A). This implies that it
is possible to reliably assign tumors to IntClust subtypes
based on biopsy material alone as might be undertaken
in clinical practice. Overall, similar proportions of each
of the 10 subtypes were found in external studies
in comparison to the METABRIC reference study
(Figure 2B). Moreover, the relative composition of each
IntClust subtype in terms of the proportion of different
‘intrinsic’ subtypes that comprised it was very similar
between the METABRIC study and external samples
(Figure 2B). The inverse of the plot in Figure 2B, depict-
ing the IntClust subtype composition of each of the
‘intrinsic’ subtypes classified according to PAM50 and
SCMGENE is presented in Additional file 9.

IntClust subtypes are associated with reproducible
survival patterns
One important measure of a novel method for disease
classification is the degree to which subtypes show an
association with clinical outcome. Here, we have under-
taken an extensive comparative analysis of the PAM50,
SCMGENE and IntClust classifiers. Figure 3A depicts
relapse-free survival plots of subtypes by all three classi-
fiers for all cases with available data from external
studies (cases from the METABRIC study have been ex-
cluded). Patterns of survival of the IntClust subtypes in
these independent cases are similar to those in the ori-
ginal METABRIC study (Additional file 10). To assess
this formally we conducted a comparative analysis of
the hazard associated with each IntClust subtype in
METABRIC (against death from breast cancer) and all
external studies (against relapse-free survival). Figure 3B
depicts hazard ratios of IntClust subtypes, taking
IntClust 3 as the referent, for each of three brackets of
follow-up time (0 to 4 years, 4 to 8 years, and 8 to
15 years) for patients in the METABRIC study and
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Figure 3 Association between subtype and clinical outcome. (A) Survival plots by subtype for external studies with available time-to-event
data. The METABRIC study is excluded. (B) Comparison of univariable hazard ratios (boxes) and 95% confidence intervals (vertical lines) for IntClust
subtypes, taking IntClust 3 as referent, for each of three follow-up brackets (0 to 4 years, 4 to 8 years, 8 to 15 years) separately for cases in the
METABRIC study and those in external studies. Box sizes are weighted according to sample size. (C) Bar-charts depicting the proportion of tumors
that underwent pathological complete response (pCR) by molecular subtype in all external studies of neo-adjuvant chemotherapy.
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patients in external studies separately. Patterns of rela-
tive hazard by IntClust subtype observed in the
METABRIC study were reproduced in external studies
in each of the three follow-up brackets. For example,
IntClust 1 and IntClust 2 were consistently associated with
increased hazard with a slightly higher hazard ratio for
IntClust 2 compared with IntClust 1 consistently between
METABRIC and external studies. Changing patterns of
hazard are also well illustrated by this analysis, particularly
the qualitative shift in hazard associated with IntClust 10,
which, again, is reproduced in external studies.
In order to evaluate the relative contribution of each

classifier to the prediction of relapse-free survival, we
compared the discrimination of survival prediction models.
These models comprised the molecular (SCMGENE,
PAM50, IntClust) subtypes as categorical variables and
were adjusted for tumor size (<1, 1 to 2, 2 to 3, 3 to
5, >5 cm), node status (negative versus positive) and histo-
logical grade (1, 2 or 3). The coefficients for these models
were derived using Cox-regression in the METABRIC data-
set and then applied to external studies with available data
in order to avoid over-optimistic estimates. Harrell’s C-
index was used to estimate the relative discrimination of
models where an index of 1 reflects perfect discrimination
between high and low risk patients while an index of less
than 0.5 reflects discrimination which is no better than
chance. We conducted analyses separately by ER status and
within three brackets of follow-up time (0 to 4, 4 to 8 and 8
to 15 years) in order to account for violations of Cox-
proportional hazards assumption [25] and to estimate dif-
ferences in model performance for short- versus long-term
survival prediction. Additional file 11 depicts the results of
these analyses. In general, the performance of all three
models was significantly better in ER-positive breast cancer,
particularly during the first 5 years of follow-up, compared
with ER-negative disease. The relative performance of the
three models was comparable in both ER-positive and ER-
negative breast cancer. Both IntClust (P = 0.005) and
SCMGENE (P = 0.03) significantly outperformed PAM50 in
the prediction of late events (8 to 15 years) in ER-positive
breast cancer (Additional file 11). However, it should be
noted that, particularly for late events (81 events in ER-
positive disease), these analyses may be underpowered and,
as a consequence, preclude robust conclusions being
drawn. These analyses show that the IntClust classifier per-
forms at least as well as transcriptome-based classification
in the prediction of relapse-free survival.

IntClust subtypes show large differences in chemosensitivity
A second determinant of the relative utility of a disease
classification scheme is whether differences in chemo-
sensitivity are reflected in different subtypes. In order to
investigate this, we used a collection of breast cancer
studies where patients had received neo-adjuvant cytotoxic
chemotherapy [26-29] and for whom data on pathological
complete response (pCR) were available (N = 871). A tumor
is said to have undergone pCR if, following surgery, no re-
sidual tumor cells remain upon pathological examination.
pCR has been shown to be a powerful predictor of long-
term survival [30]. Distinct patterns of pCR between
molecular subtypes of breast cancer have been reported
previously, with the highest rates observed in ER-negative
tumors and the lowest in ER-positive HER2-negative
tumors [31]. Similarly, distinct patterns of pCR were ob-
served by molecular subtype (Figure 3C). The highest
rates of pCR by IntClust subtyping were observed within
the IntClust 10 subtype at 37% (45/121) compared with
the highest rate by PAM50 classification within the basal-
like subtype at 31% (101/322) and the highest rate by
SCMGENE classification within the ER-/HER2- subtype
at 27% (125/463). The lowest rates of pCR by IntClust
subtyping were observed within the IntClust 2 subtype at
0% (0/20) compared with the lowest rate by PAM50 classi-
fication within the luminal A subtype at 6% (15/265) and
the lowest rate by SCMGENE classification within the
ER+/HER2-, low proliferation subtype at 8% (4/51). We
next conducted a formal comparison of the relative value
of each classifier in predicting pCR after adjustment for
clinical variables (tumor and lymph node stage and histo-
logical grade). We evaluated the discrimination of predic-
tion models using the area under the curve (AUC) from a
receiver operating characteristic (ROC) analysis. Odds ra-
tios were based on a logistic-regression model again derived
from the largest external study (N = 435) [29] and subse-
quently tested in the remaining data (N = 436) in order to
avoid over-optimistic estimates. The performance of the
three models was very similar and not significantly differ-
ent, with SCMGENE classification returning an AUC of
0.64 (95% confidence interval (CI) 0.56 to 0.72 PAM50 clas-
sification returning an AUC of 0.67 (95% CI 0.60 to 0.75),
while the IntClust classifier returned an AUC of 0.66 (95%
CI 0.58 to 0.74) (Additional file 11). These data show that
IntClust is as accurate a predictor of pCR to cytotoxic
chemotherapy as PAM50 or SCMGENE classification.

Breast cancer genomic drivers are best represented by
IntClust subtypes
We next investigated the extent to which copy number-
driven breast cancer genes are captured by the IntClust
classification compared with PAM50 or SCMGENE clas-
sification. We used an independent list of copy number
aberrations which were reported by TCGA as occurring
recurrently in breast cancer [8]. We determined the degree
to which the variation in expression of genes contained
within these regions of CNA (Additional file 12) is ex-
plained by molecular subtype using data from all exter-
nal studies (excluding the METABRIC discovery study).
In a one-way analysis of variance (ANOVA) we took
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gene expression as the dependent variable and molecu-
lar subtype as independent variables. The explained
variation in gene expression by molecular subtype was
estimated using an adjusted R-squared statistic within
each study. This was conducted separately for genes con-
tained within regions of amplification (N = 409) and dele-
tion (N = 3,485). An average adjusted R-squared statistic
was computed for each study. These statistics represent
the average explained variation of gene expression for
every amplified or deleted gene per study. In order to de-
termine whether IntClust or PAM50 classification better
explained these patterns of gene expression, we subtracted
the average R-squared for IntClust from that of PAM50
per study. Figure 4 depicts the average of these differences
for amplified and deleted genes where a positive value de-
notes that, on average, variation in gene expression is better
explained by IntClust and a negative value denotes better
explanation by transcriptome-based (PAM50) classification.
We calculated 95% CIs using the percentile method based
on bootstrap resampling of 1,000 replicates. The diamonds
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Therefore, a method for capturing this complexity which
can be readily implemented in a clinical setting is urgently
required. We have extensively investigated the potential of
the IntClust classification to meet this need, in terms of its
reproducibility, association with clinical outcome and rep-
resentation of copy number-driven cancer genes. We find
that IntClust subtypes are observable across studies, are
significantly associated with clinical outcome and best cap-
ture the repertoire of breast cancer genomic drivers. These
data provide a compelling rationale for IntClust as a driver-
based molecular taxonomy with considerable potential for
clinical application. Indeed, a recent clinical trial (SAFIR01)
shows that CNAs are the drivers for which targeted therap-
ies are most frequently identified in breast cancer [32].
IntClust subtypes were observed across studies at com-

parable frequencies. This important observation demon-
strates that these entities are reproducible and represent
true breast tumor subtypes. The discovery study used
for identifying the IntClust groups comprised 997 tu-
mors from five centers spanning two continents [17].
This approach was adopted in order to accrue a suffi-
cient sample size representative of the whole of the
breast cancer population. Therefore, a robust classifier
of IntClust subtypes should identify these groups in ex-
ternal studies, just as we have observed. We also note
that TP53, one of the two most frequently mutated
genes in breast cancer, is mutated at comparable fre-
quencies across IntClust subtypes in both METABRIC
and TCGA [33].
The clinical validity of the IntClust subtypes has here

been demonstrated by their association with relapse-free
survival and propensity to undergo pCR in studies of neo-
adjuvant chemotherapy. An important observation was
the recapitulation of survival patterns originally observed
in the METABRIC study [17]. This shows that the
IntClust subtypes are biologically distinct, readily discern-
ible entities associated with widely variable but predictable
clinical behavior. We compared the performance of pre-
diction models which contained either transcriptome-
based or IntClust subtypes in their ability to discriminate
between patients at higher versus lower risk of disease
relapse or resistance to chemotherapy. These models
performed similarly. Since the IntClust subtypes were
conceived with the intention of best representing
breast tumor biology as defined by the genome, sur-
vival was not taken into account [17]. It should, how-
ever, be noted that an association with survival is not
the sole arbiter of the validity of a biological classification.
Data-driven approaches designed to generate models for
risk stratification of breast cancer patients have largely un-
covered proliferation-related genes which, while they are
indisputably effective predictors of survival, do not pro-
vide additional insight into the biology underlying their
expression [34]. Equally, an example of an important
disease entity which does not significantly improve pre-
diction of survival is lobular breast carcinoma. Patients
with these tumors, which are characterized by single-file
morphology and loss of E-cadherin expression, have
been convincingly shown to experience patterns of sur-
vival indistinguishable from patients with the more
common invasive ductal carcinoma [35], yet the diagno-
sis of lobular carcinoma is routine, critical for appropri-
ate long-term clinical management and highlights a
patient subgroup potentially amenable to novel targeted
therapies. A comparable example concerns the distinction
between IntClust 2 and IntClust 1. IntClust 2 tumors are
characterized by amplification of 11q13/14 encompassing
CCND1, EMSY [36] and PAK1, whereas IntClust 1 tumors
harbor 17q23 amplification encompassing RPS6KB1, PPM1D,
PTRH2 and APPBP2 [17]. Both subgroups comprise high-
risk, mostly ER-positive tumors. The unadjusted 10 year
relapse-free survival observed in external studies was
64% for patients with IntClust 1 tumors and 49% for pa-
tients with IntClust 2 tumors. However, no tumors in
the IntClust 2 subtype underwent pCR (0/20) whereas
tumors in the IntClust 1 subtype showed the fourth
highest rates of pCR at 20% (15/76). Although these ob-
servations require validation, they suggest that in spite
of a similar aggressive clinical course, IntClust 2 tumors
are chemoresistant in comparison to IntClust 1 tumors.
This difference, highlighted by IntClust subtyping and
likely attributable to differences in amplification-driven
oncogenes, is worthy of further investigation. Here,
IntClust 2 tumors represented just 3.1% (298/9,524) of
patients; nonetheless, this group experiences some of
the poorest survival of all subgroups. This dismal prog-
nosis may, in part, be explained by our observation that
IntClust 2 tumors are entirely chemoresistant. These
patients warrant consideration of alternative therapeutic
modalities and represent a priority for the development
of novel targeted therapies. This subtype is not identi-
fied by any other breast cancer classification scheme.
Such observations highlight the important benefits of
rational tumor classification based on molecular drivers.
Based on an independent list of recurrent CNAs in

breast cancer and using samples compiled from external
studies [8], we found that the IntClust classification best
explains expression levels of genes which fall within
these loci. This finding reiterates the nature of IntClust
as a biological classification which explains characteris-
tic gene expression profiles in terms of their genomic
drivers. We have conducted an unbiased comparison by
including all genes that fall within loci reported as re-
currently altered by an independent group (TCGA);
however, it should be noted that the magnitude of
explained variation differed greatly between genes
(Additional file 16). The explained variation of a large
proportion of genes showed little difference between
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classifiers whereas a subset showed large differences
(Additional file 16). This is likely due to the fact that
the majority of genes included within these loci are
passengers which do not confer a growth advantage to
proliferating tumor cells. Somatic CNAs are a relatively
common event among breast cancer genomes and a
long-standing problem has been to identify genes which
amount to drivers within recurrently altered genomic
loci. Although criteria for their characterization have
been proposed [37], particularly for amplified genes,
they stipulate multiple lines of independent evidence
which require considerable resources and, as such, have
not been generated for most loci. Moreover, it is possible
that in some instances where a minimal region of amplifica-
tion contains more than one gene, such as the 11q13/14
locus which defines IntClust 2, that adjacent genes may act
in a concerted manner to confer a selective growth advan-
tage just as has been observed in lung cancer [38]. The
conception of IntClust was pragmatic in attempting to
minimize the influence of passenger genes. Three strategies
were employed to this end. First, the discovery study was
large (997 samples), enabling reliable identification of
regions of recurrent CNA. Second, only the top 1,000 cis
eQTLs were included for classification based on the
strength of association between alteration in copy number
and levels of gene expression. Third, clustering retained
only those features which contributed to the separation of
tumors into distinct subgroups (754 features) [17]. This ap-
proach provides the most definitive scheme for breast
tumor classification based on the pattern of copy number-
driven genes. It is likely, therefore, that our unbiased com-
parison of explained variation in the expression of genes
within recurrent CNAs underestimates the extent to which
IntClust reflects the expression of genomic drivers within
these regions. Nonetheless, our analysis does demonstrate
that IntClust best captures variation in levels of gene ex-
pression of copy number-driven breast cancer genes.
Conclusions
We have developed an expression-based method for
classification of breast tumors into the IntClust sub-
types. We used this method and public datasets of
breast tumor transcriptomes to investigate the validity
of IntClust. We confirmed that the IntClust subtypes
are reproducible entities, demonstrated their association
with clinical outcome and found that IntClust best cap-
tures expression patterns of breast cancer drivers. Our
method is a powerful tool for independent researchers
to investigate the significance of IntClusters. Moreover,
our findings highlight the potential of IntClust in the
era of targeted therapies. Our classifier lays the founda-
tion for the generation of a clinical test to assign tumors
to IntClust subtypes.
Materials and methods
Development of the IntClust expression-based classifier
We modified the method for IntClust classification
which was originally reported for subtype validation
[17]. Probes were re-annotated to hg19 and some elimi-
nated because of ambiguous genomic matching (where
a probe sequence matched to more than one position in
the reference genome). Some genes were represented by
more than one probe, reflecting the design of the
Illumina beadarray ht12v3 microarray, in which probes
can represent different parts of a gene. Our method
followed three steps in classifying a new set of samples.
In the first step features were matched. Copy number
features were matched either by genomic position or
gene name, while expression features were matched by
probe name (METABRIC study) or gene name. This was
performed by the function matchFeatures. In the second
step data were normalized to the distribution of the
METABRIC discovery set. We scaled each gene to a z-
score. This was achieved using the normalizeFeatures func-
tion. The function also implements other normalization
methods from the CONOR R package [39]. In the third
step a classifier was trained using the probes that were
matched using the pamr R package [22], based on shrunken
centroids. The optimal threshold was chosen by cross-
validation, so different runs produced slightly different clas-
sifications unless we set a random number seed. That is,
centroids were re-estimated based on the features available
in different platforms against the METABRIC discovery
dataset for each of the 10 clusters. The iC10 function was
used for this step.
Several quality statistics were included as part of our

method for inspection of results. A goodness of fit,
which was a Pearson correlation coefficient, was com-
puted. It represented the correlation between the aver-
age (across all samples) gene expression profile for each
cohort and the centroids from the training data set,
within each IntClust subtype for those genes where data
were available in the external study. In short, the statistic
represents a measure of the similarity, in terms of gene
expression, of IntClust subtypes from external studies
compared with the training data set. We plotted cen-
troids in order to inspect their representation within
each subtype in the test dataset - several functions are
included in the iC10 package to achieve this. We have
made our method freely available for download as an R
package under the name 'iC10' at CRAN [40].
We applied this method to breast cancer gene-

expression datasets available in public repositories. A
large proportion of these studies had previously been
compiled and curated by Haibe-Kains et al. [24] and we
downloaded these data directly from the authors’ web-
site [24]. Additional details, including Gene Expression
Omnibus (GEO) accession numbers of included studies
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are detailed in Additional file 2. It is possible that data
for some patients have been uploaded more than once,
particularly if those patients participated in more than
one study. We took three precautions against inadvert-
ent inclusion of replicate records in our analyses: 1) only
cases with a unique GEO identifier were retained; 2)
cases identified by Haibe-Kains et al. as replicates were
removed; and 3) cases identified by the doppelgangR
package [41] as replicates based on highly correlated
gene expression profiles were further investigated.
Those cases which, in addition to correlated gene ex-
pression, also showed concordant values for tumor
stage, node stage, histological grade and, in the case of
neo-adjuvant studies, pCR were also removed. Cases
identified as probable replicates by this strategy almost
exactly overlapped with those annotated as replicates by
Haibe-Kains et al. with only an additional three cases
being removed. For each dataset, the iC10 package was
run with expression data only (using probe names for
the METABRIC study and gene names for the rest) and
normalizing each probe to a z-score ('scale' option in
the function normalizeFeatures). PAM50 classification
was conducted accounting for imbalances in ER status,
as defined in [17]. SCMGENE classification was con-
ducted using the genefu package in R, available at
Bioconductor.
In order to classify breast cancer cell lines, we used

copy number and gene expression data from two collec-
tions of cell lines: Sanger COSMIC database and CCLE.
Copy number data from the COSMIC database con-
sisted of segmented copy number calls. The CCLE data-
base provided copy number data on 579 genes (optimal
IntClust classification requires 612 genes) as the summa-
rized log ratio for each gene. Nevertheless, the fit of the
IntClust classifier based on copy number was similar for
both datasets (0.74 for COSMIC and 0.75 for CCLE).
We noted that some cell lines are characterized by copy
number amplification of both ERBB2 (IntClust 5) and
8q24 (IntClust 9), which contains the MYC oncogene. In
these cases the classifier mostly assigned an IntClust 9
subtype (HCC1419, HCC1569, MDA-MB-453, OCUB-M,
ZR-75-30). As a comparison, 10% (28/268) of primary
tumors with amplification of ERBB2 also showed co-
amplification of MYC in 1,980 samples from the METAB-
RIC study. Cell lines were also classified in IntClust
subtypes based on gene expression alone and combined
copy number/gene expression and into PAM50 and
SCMGENE subtypes based on gene expression alone.

Statistical analysis of the association between subtype
and clinical outcome
Associations between subtype and survival were esti-
mated using Cox regression. Of the studies with
available time-to-event data, relapse-free survival was
available for some and distant metastasis-free survival for
others. Our survival time variable comprised relapse-free
survival but where this was unavailable distant metastasis-
free survival was used.
Comparison of univariable hazard ratios associated

with IntClust subtype between the METABRIC (dis-
ease-specific survival) and external studies (relapse-free
survival) (Figure 3B) was conducted by using IntClust 3
as the referent class, separately for three brackets of
follow-up time (0 to 4, 4 to 8 and 8 to 15 years).
Performance of predictive models was assessed as

follows: Cox regression models which contained either
PAM50 or IntClust as a categorical variable and were
adjusted for tumor size (<1, 1 to 2, 2 to 3, 3 to
5, >5 cm), node status (negative versus positive) and
histological grade (1, 2 or 3) as continuous variables
were fit within the METABRIC study (the largest study)
against available time-to-event data (disease-specific
survival). These models were stratified by each of the
five centers of the METABRIC consortium. Separate
models were fit for ER-positive and ER-negative breast
cancer within three time brackets (0 to 4, 4 to 8 and 8
to 15 years) in order to investigate differences in model
performance in short- versus long-term survival and to
account for violations of the proportional hazards as-
sumption. The coefficients derived from these models
were then applied to external studies with available data.
Comparison of model discrimination in this test popula-
tion was conducted using the method suggested by
Newson [42] using Harrell’s C-index implemented using
the somersd and lincom commands in Stata [42].
Associations between subtype and pCR were esti-

mated using logistic regression. Logistic regression
models comprising either PAM50 or IntClust as cat-
egorical variables and adjusted for tumor size (T-stage),
positive lymph nodes (N-stage) and histological grade
were fit in the largest study of neo-adjuvant chemother-
apy [29]. Coefficients derived from these models were
then applied to the remaining test data. Model discrim-
ination in the test data was estimated using the AUC
from a ROC analysis. These analyses were conducted
using Intercooled Stata version 11.2 (Stata Corp, College
Station, Texas, USA).

Comparative evaluation of the representation of genomic
drivers by subtype
For each gene in each list of amplified and deleted genes,
we fitted an ANOVA linear model relating the expression
of that gene to IntClust groups or the PAM50 groups. We
measured the goodness of fit of these two models using
the adjusted R-squared - a measure that accounts for dif-
ferences in degrees of freedom of the two models when
the models have been completely pre-specified [43]. We
computed the differences in adjusted R-squared for each
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gene and averaged them for each gene list. CIs were ob-
tained using 1,000 bootstrap replicates with the percentile
method implemented in the package boot [44]. An overall
mean for all studies was computed weighting each study
by its size. These analyses were conducted using R version
3.1.0 [45].
Annotated R and Stata code used to generate the re-

ported analyses is provided as Additional file 17.

Data availability
Data from the METABRIC study is deposited in the
European Genome-phenome Archive and can be
downloaded from [46]. The IDs for expression are:
EGAD00010000210 (discovery) and EGAD00010000211
(validation). The IDs for copy number are: EGAD00
010000213 (discovery) and EGAD00010000215 (valid-
ation). Details of data sources, including accession codes
for all other studies, are provided in Additional file 2.
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