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Exon identity crisis: disease-causing mutations
that disrupt the splicing code
Timothy Sterne-Weiler1 and Jeremy R Sanford2*
Abstract

Cis-acting RNA elements control the accurate
expression of human multi-exon protein coding
genes. Single nucleotide variants altering the fidelity
of this regulatory code and, consequently, pre-mRNA
splicing are expected to contribute to the etiology of
numerous human diseases.
more likely, families of related transcripts may be mis-
Introduction
Although genes span 33.4% of the human genome from
start codon to stop codon, only 3.66% of their sequence
comprises protein coding sequences [1]. Introns make
up the rest of this gene space, separating adjacent
protein coding exons from one another. To produce a
mature mRNA that encodes a continuous string of co-
dons, these exons must be put together following the
precise excision of introns in a process referred to as
precursor messenger RNA splicing (pre-mRNA splicing).
Aberrant pre-mRNA splicing is now recognized as the
underlying cause of many human diseases. Mutations in
trans-acting factors or cis-acting regulatory elements
compromise the expression of protein-coding genes by
decreasing the specificity or fidelity of splice site selec-
tion, a fundamental step in expression of multi-exon
genes.
At least three mechanisms can induce RNA-based

disease. First, genetic variants such as point mutations
can abolish cis-acting elements recognized by RNA
binding proteins (RBPs), thereby inducing disease
phenotypes in humans. Work on many disease genes,
including the breast cancer gene BRCA1, the gene en-
coding the cystic fibrosis transmembrane conductance
regulator (CFTR), the growth hormone gene GH1 and
the ataxia telangiectasia mutated gene ATM, has demon-
strated that all classes of point mutations, including
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nonsense mutations, can disrupt exonic splicing regula-
tory elements (ESRs) and induce aberrant pre-mRNA
splicing [2-6]. Second, RBPs are implicated (either by
mutation or aberrant expression) in numerous human
diseases, including cancer, Alzheimer’s disease, fronto-
temporal dementia, spinal muscular atrophy (SMA) and
retinitis pigmentosa (reviewed in [7]). These observa-
tions suggest that processing of specific transcripts or,

regulated. Finally, RNAs transcribed from genes contain-
ing trinucleotide repeat expansions also induce disease.
These toxic RNAs seem to function by sequestering
RBPs and causing gross changes in post-transcriptional
gene expression programs [8].
Given that other review articles have already done an

exceptional job at summarizing the pleiotropic effects of
RBPs and toxic RNA elements on pathogenesis [9-13],
here we focus on aberrant protein-RNA interactions im-
plicated in monogenic human diseases.
Splicing mechanism
Pre-mRNA splicing is catalyzed by the spliceosome, a
large ribonucleoprotein complex. The spliceosome as-
sembles de novo on each and every transcribed intron
and catalyzes two sequential trans-esterification reac-
tions, which yield ligated exons and an excised intron-
lariat [14]. The earliest stages of spliceosome assembly
are critical in defining which exon sequences are to be
joined during the splicing reaction [15]. Splicing of most
human pre-mRNAs initiates in an exon-centric manner
in which the upstream 3′ splice site and the downstream
5′ splice site are linked through interactions between U2
auxiliary factor (U2AF) and the U1 small ribonucleopro-
tein particle (U1 snRNP; Figure 1a) [16]. Later in the
spliceosome assembly pathway these cross-exon interac-
tions are replaced by intron-bridging interactions that
connect the reactive 5′ and 3′ splice sites [16,17].
The decision of whether to splice or not to splice is

typically modeled as a stochastic rather than determinis-
tic process, such that even the most defined splicing
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Figure 1 Targets of single-nucleotide polymorphism-induced aberrant pre-mRNA splicing mutations. (a) Schematic diagram of the
exon definition complex. 70 K, 70 kDa subunit of the U1 snRNP; ESE, exon splicing enhancer; RRM, RNA recognition motif protein domain; SR,
serine-arginine rich protein domain; U1 snRNP, U1 small nuclear ribonucleoprotein; U2AF, U2 auxiliary factor; Y, pyrimidine nucleotide. Uppercase
indicates donor and acceptor splice site dinucleotides, lowercase indicates adjacent consensus nucleotides. (b) Typical functionality of splicing
regulatory elements in wild type (healthy) context. (c) Potential mechanisms for splicing-sensitive mutations. Green squares and arrows indicate
splicing enhancers; red indicates silencers; solid boxes indicate constitutive or alternative exons; dashed boxes indicate pseudo-exons.
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signals can sometimes splice incorrectly [18]. However,
under normal conditions, pre-mRNA splicing proceeds
at surprisingly high fidelity [19]. This is attributed in
part to the activity of adjacent cis-acting auxiliary exonic
and intronic splicing regulatory elements (ESRs or ISRs)
[20-24]. Typically, these functional elements are classi-
fied as either exonic or intronic splicing enhancers (ESEs
or ISEs) or silencers (ESSs or ISSs) based on their ability
to stimulate or inhibit splicing, respectively. Although
there is now evidence that some auxiliary cis-acting ele-
ments may act by influencing the kinetics of spliceosome
assembly, such as the arrangement of the complex be-
tween U1 snRNP and the 5′ splice site, it seems very
likely that many elements function in concert with
trans-acting RBPs [25]. For example, the serine- and
arginine-rich family of RBPs (SR proteins) are a con-
served family of proteins [26] that have a key role in de-
fining exons [27]. SR proteins promote exon recognition
by recruiting components of the pre-spliceosome to ad-
jacent splice sites or by antagonizing the effects of ESSs
in the vicinity [28-30]. The repressive effects of ESSs can
be mediated by members of the heterogeneous nuclear
ribonucleoprotein (hnRNP) family and can alter recruit-
ment of core splicing factors to adjacent splice sites [31].
In addition to their roles in splicing regulation, silencer
elements are suggested to have a role in repression of
pseudo-exons, sets of decoy intronic splice sites with the
typical spacing of an exon but without a functional open
reading frame [32]. ESEs and ESSs, in cooperation with
their cognate trans-acting RBPs, represent important
components in a set of splicing controls that specify
how, where and when mRNAs are assembled from their
precursors [30,33,34].

Alternative splicing
The sequences marking the exon-intron boundaries are
degenerate signals of varying strengths that occur at
high frequency within human genes [35]. In multi-exon
genes, different pairs of splice sites can be linked to-
gether in many different combinations, creating a diverse
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array of transcripts from a single gene [36,37]. This is
commonly referred to as alternative pre-mRNA splicing,
and is classified into several discrete event types that
have been observed both in vitro and in vivo [38].
Recent studies suggest that 86 to 94% of human multi-

exon genes undergo alternative splicing [39,40] and a
considerable portion of human functional variation
within the population is likely to cause changes at the
transcript level [41]. The sheer abundance of this
phenomenon is remarkable, raising the question of how
many of the isoforms produced by a single gene encode
functional messages. Although most mRNA isoforms
produced by alternative splicing will be exported from
the nucleus and translated into functional polypeptides,
different mRNA isoforms from a single gene can vary
greatly in their translation efficiency [42]. Those mRNA
isoforms with premature termination codons at least
50 bp upstream of an exon junction complex are likely
to be targeted for degradation by the nonsense-mediated
mRNA decay (NMD) pathway [43]. Although this type
of unproductive splicing is typically thought to be a
byproduct of splicing as a stochastic process, the SR
genes are clear examples of how this can be exploited as
an essential regulatory mechanism [44-46]. SR proteins
have been shown to regulate the splicing of their own
genes, each of which contain an ultraconserved sequence
[47] such as a poison exon containing a premature ter-
mination codon; when spliced into the mature RNA,
these exons can trigger transcript degradation by NMD
[48,49]. The first example of this form of splicing factor
autoregulation coupled to mRNA surveillance was char-
acterized in the SRSF2/SC35 gene (a member of the SR
family): high levels of the SRSF2/SC35 protein promote
a 3′ untranslated region splicing event that destabilizes
the SRSF2/SC35 mRNA [46].

Mis-splicing and monogenic diseases
Given that exon-intron boundaries can occur at any of
the three positions of a codon, it is clear that only a sub-
set of alternative splicing events can maintain the canon-
ical open reading frame. For example, only exons that
are evenly divisible by 3 can be skipped or included in
the mRNA without any alteration of reading frame. Spli-
cing events that do not have compatible phases will in-
duce a frame-shift. Unless reversed by downstream
events, frame-shifts will almost certainly lead to one or
more premature termination codons, probably resulting
in subsequent degradation by NMD. The most common
frame-preserving alternative event type is compatibly
phased exon skipping; however, 20% of all frame-
preserving alternative splicing events involve the alterna-
tive use of adjacent 3′ NAGNAG splice sites [50,51].
Several studies have investigated the evolution of multi-
exon gene architectures and found significant correlation
of the edges of exons with protein domain boundaries
[52,53]. Furthermore, exons whose edges correlated with
protein domain boundaries were significantly enriched
for compatible splice site phase. These observations have
been used as evidence for the evolutionary hypothesis
of exon shuffling, a mechanism for diversification of
modular protein functions [54,55]. Moreover, the data
clearly support the postulate that evolutionary history
of a gene will affect its susceptibility to alternative
splicing-induced frame-shifting.
Following a model of neutral genetic drift, some genes

are under greater selective constraints than others.
Genes encoding proteins that have vital and non-
redundant roles may impart a major loss of fitness to an
organism if disrupted by germline and somatic mutation.
Depending on protein structure and function and exon-
intron architecture, these genes may be more or less sus-
ceptible to aberrant function by different means. For ex-
ample, different mutations causing loss of function in
CFTR can cause varying levels of severity of cystic fibro-
sis (CF) [56]. Although 70% of CF cases are at least het-
erozygous for a deletion of phenylalanine 508 (ΔF508)
that impairs protein folding and subsequent function
[57], only four other mutations (G542X, N1303K,
G551D and W1282X) have allele frequencies above 1%
[58]. This leaves a percentage of atypical CF-associated
mutations that are rare or unique to individuals or
families, resulting in roughly 15% of all CF cases having
mutations with unknown functions [59]. Moreover,
about 13 to 20% of all the CF-associated mutations are
thought to cause pre-mRNA splicing defects by aberrant
inclusion or exclusion of several of the 27 exons as a
primary mechanism of disease causation [10]. At least
one of these, exon 9, has been studied in great detail,
illuminating a complex set of regulatory elements that
regulate its alternative splicing [60-62].
High-throughput DNA sequencing is now revealing

the extent of human genetic variation on a comprehen-
sive scale. However, because of the complexity of these
data, it is often unclear which variants are functional
and which biochemical mechanisms they affect [63]. For
genes that are highly susceptible to aberrant splicing
by a number of different mechanisms (such as CFTR;
Figure 1), determining the penetrance associated with de
novo atypical mutations is a crucial gap towards compre-
hensive molecular diagnosis for their associated diseases.
To tackle this problem for CFTR and other genes with
pre-mRNA splicing defects, it is necessary to consider
the possible mechanistic impacts of a point mutation on
the splicing machinery. Figure 1b,c illustrates some of
the architectural features of a generic wild-type (healthy)
gene, such as: the presence of one or more exonic spli-
cing enhancers; splicing silencers that work to repress
intronic pseudo-exons; and cryptic splice sites. Mutation



Table 2 Genes sorted by total number of ESR gain or loss
mutations

Gene No of ESR gains
and losses

Percentage of
gene

F8 221 28.4

CFTR 173 30.1

LDLR 143 27.1

FBN1 135 24.9

DMD 120 45.8

F9 101 32.8

NF1 89 39.6

COL4A5 84 43.5

PAH 79 23.0

GLA 69 34.8
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of 5′ and 3′ splice site dinucleotides and adjacent bases
can render them inactive; this is the most easily recog-
nized mechanism of splicing disruption, accounting for
10% of all human inherited disease mutations [64]. For
this reason, disruption of the GU and AG splice site di-
nucleotides are recognized as deleterious by most of the
recent single-nucleotide polymorphism functional classi-
fication tools, such as those based on SIFT [65,66].
However, the need for methods or tools to evaluate the
impact of genetic variants towards the loss or gain of
both ISRs and ESRs remains critical.
Work from our group and another suggest that 22 to

25% of exonic human inherited disease mutations are
likely to be splicing sensitive [67,68]. We find that this
percentage is unevenly distributed across different dis-
eases (Tables 1 and 2), suggesting that there is a
Table 1 Genes sorted by percentage of ESR loss or gain
mutations per gene (for genes with more than 10 such
mutations)

Gene Number of ESR
loss/gain mutations

Percentage of
mutations in gene

CEP290 18 62.1

CHM 14 56.0

FGA 11 52.4

AGL 12 52.2

PAX3 12 50.0

LAMB3 13 48.1

BRAF 11 47.8

NF2 35 47.3

NIPBL 22 46.8

DMD 120 45.8

EFNB1 12 44.4

KRIT1 16 44.4

CYP27A1 11 44.0

COL4A5 84 43.5

EXT1 18 42.9

TSC1 17 42.5

ALB 21 42.0

EDA 12 41.4

IL2RG 28 41.2

APC 32 41.0

F10 15 40.5

MSH2 51 40.5

CYBB 53 40.2

FECH 12 40.0

NF1 89 39.6

BRCA2 35 38.9

The table shows genes with mutations that cause the loss or gain of a disease-
enriched ESR, based on data from [68]. Cancer-associated tumor suppressor
genes from the Cancer Census [69] and oncogenes are in bold.

OTC 66 28.9

BTK 64 25.7

BRCA1 61 35.9

ATP7B 60 25.5

ATM 58 34.3

MEN1 58 37.2

ABCA4 56 19.0

MLH1 55 35.7

COL7A1 53 28.3

CYBB 53 40.2

MSH2 51 40.5

COL1A1 49 21.1

GCK 48 28.2

TSC2 47 30.3

COL1A2 45 26.0

MYH7 45 23.9

The table shows genes with mutations that cause the loss or gain of a disease-
enriched ESR, based on data from [68]. Cancer-associated tumor suppressor
genes from the Cancer Census [69] and oncogenes are in bold.
spectrum of susceptibility towards aberrant gene regula-
tion through loss or gain of ESRs. In the case of the
Duchenne muscular dystrophy (DMD) gene, for ex-
ample, rather than the approximately 22 to 25% pre-
sented previously [67,68], we find that as many as 120
mutations, representing nearly half of all the missense
and nonsense disease-causing mutations targeting this
gene, cause the loss or gain of disease enriched ESRs.
This suggests an expanded role for splicing mutations
relating to Duchenne or the less severe Becker muscular
dystrophy. Future studies that include mutations affect-
ing intronic cis-acting elements may shed light on an
additional class of splicing-sensitive variants.
We find it intriguing that the architecture of different

genes renders some more sensitive to mutation-induced
aberrant splicing than others. Within this subset of
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splicing-sensitive genes we noted that the proportion of
cancer-related genes [68] increases with the percentage
of putative splicing-sensitive mutations (Figure 2). Of
the 492 genes from the Human Gene Mutation Database
considered by our analysis, only 11% are cancer related
[69] while this proportion is three-fold higher within
the top 50 splicing-sensitive genes (χ2 goodness-of-fit
P-value of 1.2 × 10-4). Summarizing the data in Tables 1
and 2, it becomes apparent that the majority of these
are known tumor suppressor genes, providing support
for the motion to recognize aberrant splicing as a hall-
mark of cancer [70]. Aberrant splicing has already
been directly implicated as a causative mechanism for
disruption of many of these genes previously [71].
Missense and nonsense mutations in the mismatch re-
pair genes MLH1 and MSH2 have both been shown
to cause aberrant splicing in multiple contexts [72-75].
Likewise, mutations in the APC tumor suppressor
gene have aberrant isoforms that are thought to be
degraded by NMD [76]. These data suggest the intri-
guing hypothesis that cancer-related genes may have a
greater susceptibility towards aberrant splicing than
other genes.
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Figure 2 Splicing susceptibility of cancer related genes. The
positive increase in cancer-associated genes is dependent on the
overall percentage of putative splicing mutations within the gene
(black line). Independent permutations followed by re-plotting with-
out any putative splicing sensitivity measure results in expected
numbers of cancer-associated genes (dotted gray line). Cancer-
associated genes are defined as the 510 genes represented in the
Cancer Census [69].
Future therapeutic potential
The susceptibility of many disease genes (such as DMD,
ATM, NPC1 (Niemann-Pick disease), F9 (hemophilia A),
F8 (hemophilia B)) to aberrant pre-mRNA splicing has
spawned creative therapeutic approaches that have been
the focus of a great deal of time and effort [77-84]. Of
these, one of the most successful cases has been the re-
versal of aberrant exon 7 skipping in the SMA-related
gene SMN2 by antisense oligonucleotides [79,83,84].
SMA is an autosomal recessive disorder that is charac-
terized by varying severity due to the loss of function of
SMN1, of which humans have one copy on each
chromosome 5. A nearly identical paralog, SMN2, has
only five single nucleotide differences, all of which are
non-coding except one C > T synonymous mutation six
bases from the 3′ splice site within exon 7. The mechan-
istic impact of this C > T transition has been studied ex-
tensively, and has been shown to be associated with
both the loss of an ESE that binds SRFS1 to stimulate
exon definition [85,86] and the antagonistic gain of an
ESS that binds hnRNP A1 to repress exon definition [5].
In vivo selection studies and antisense oligonucleotide
tiling experiments have additionally discovered a num-
ber of other regulatory elements within and adjacent to
this exon [80,87,88].
Because individuals with SMA typically have loss of

SMN1 but normal copies of SMN2, research into a
general treatment for SMA has been targeted towards
methods to increase splicing of endogenous SMN2 exon
7 as a means to increase functional SMN protein. Recent
studies have robustly ameliorated symptoms of severe
SMA mouse models through delivery of antisense oligo-
nucleotides masking the ESS-N1 element [79,83,84],
demonstrating that antisense approaches may represent
an effective treatment for SMA. Although most inherited
disease-related genes do not have a backup copy similar
to SMN2 to serve as a template for RNA targeted ther-
apies, this scenario does illuminate the potential feasibil-
ity of rational nucleic acid-based therapeutics in the
coming years.

Conclusion
Functional characterization of both germline and som-
atic variants remains a considerable challenge. This is
due in part to the limited understanding of the gene
architectural contexts that give rise to varying degrees of
susceptibility to aberrant processing. How different de-
grees of susceptibility contribute to the etiology of inher-
ited and somatic diseases remains a crucial question in
the field. This question is becoming increasingly import-
ant for several inherited and somatic diseases, including
cancer. The root of this question lies at the heart of un-
raveling the networks of protein-RNA interaction that
are active in various cellular contexts. Beyond this task
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lies the promise of potentially groundbreaking thera-
peutic approaches based on correcting aberrant protein-
RNA interactions within a cell.
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