PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Let your fingers do the walking

ArticleInfo		
ArticleID	:	4702
ArticleDOI		10.1186/gb-spotlight-20030218-01
ArticleCitationID		spotlight-20030218-01
ArticleSequenceNumber	\Box	54
ArticleCategory	\Box	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2003–2–18 OnlineDate : 2003–2–18
ArticleCopyright		BioMed Central Ltd2003
ArticleGrants	\Box	
ArticleContext	\Box	130594411

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Transcription factors are often modular in nature, containing sequence-specific DNA-binding domains and transactivation domains. In an Advanced Online Publication in Nature Biotechnology Kwang-Hee Bae and colleagues at ToolGen Inc in South Korea, report the generation of "designer transcription factors" with specific binding activities (*Nature Biotechnology*, 18 February 2003, doi:10.1038/nbt796). A modified one-hybrid screen in yeast selected zinc-finger motifs with specific DNA-binding properties. The system was used to screen a library of over 2,000 factors that were derived from the Zif268 transcription factor and contained variant zinc-finger sequences isolated from the human genome; 56 zinc fingers with distinct DNA-binding specificities were isolated. Bae *et al.* shuffled the selected zinc-finger domains and tested them as transcription factors. They found that the 'natural' human zinc-finger domains function better than 'artificial' engineered zinc fingers. The designer factors could also regulate expression of a chosen endogenous genomic locus.

References

- 1. *Nature Biotechnology*, [http://www.nature.com/naturebiotechnology]
- 2. ToolGen Inc., [http://www.toolgen.com]
- 3. Zinc finger proteins as designer transcription factors.
- 4. Selection of peptides that functionally replace a zinc finger in the Sp1 transcription factor by using a yeast combinatorial library.