PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Skin deep

ArticleInfo		
ArticleID	:	4696
ArticleDOI	:	10.1186/gb-spotlight-20030211-01
ArticleCitationID	:	spotlight-20030211-01
ArticleSequenceNumber	:	48
ArticleCategory	:	Research news
ArticleFirstPage	÷	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2003–2–11OnlineDate: 2003–2–11
ArticleCopyright	:	BioMed Central Ltd2003
ArticleGrants	:	
ArticleContext	:	130594411

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Fundamental differences between human and mouse skin, and differences in cellular transformation, pose a challenge to the development of useful models for studying skin diseases and malignancies. In the February 6 Nature Maya Dajee and colleagues at Stanford University School of Medicine in California describe experiments in normal epidermal cells that demonstrate the roles of oncogenic Ras and NF κ B pathways in neoplastic transformation (*Nature* 2003, **421**:639-643). They used an animal model in which normal human skin is grafted onto the back of immunodeficient *scid* mice. They delivered a series of oncogenic genes to human keratinocytes using retroviral infections. Co-expression of oncogenic Ras and a stable repressor mutant of I κ B α induced large neoplasms similar to human squamous cell carcinoma (SCC). The tumors displayed several SCC characteristics including an elevated mitotic index. Blocking NF κ B activity appears to overcome Ras-induced growth arrest and induces the expression of high levels of the protein kinase CDK4. Dajee *et al.* also demonstrate the importance of the human integrin α 6 β 4 in the skin tumorigenesis process.

References

- 1. Nature, [http://www.nature.com]
- 2. Stanford University School of Medicine , [http://www.med.stanford.edu/]
- 3. Ras and Rho regulation of the cell cycle and oncogenesis.
- 4. NF-κB in cancer: from innocent bystander to major culprit.

This PDF file was created after publication.