PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Phage integrase in mice

ArticleInfo		
ArticleID	:	4694
ArticleDOI		10.1186/gb-spotlight-20030207-01
ArticleCitationID		spotlight-20030207-01
ArticleSequenceNumber		46
ArticleCategory		Research news
ArticleFirstPage		1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2003–2–7 OnlineDate : 2003–2–7
ArticleCopyright	\vdots	BioMed Central Ltd2003
ArticleGrants	\Box	
ArticleContext	\Box	130594411

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

The Cre and Flp site-specific recombinases have become standard tools for genome engineering in mice. In an Advanced Online Publication in Nature Biotechnology Belteki *et al.* demonstrate that the integrase from *Streptomyces* ΦC31 phage can be used in mouse embryonic stem (ES) cells to generate site-specific insertions in the genome (*Nature Biotechnology*, 3 February 2003, doi;10.1038/nbt787). They placed a sequence flanked by *attP* or *attB* recognition sites in the mouse genome (P- or B-docking sites) and then introduced a plasmid containing an *attB* or *attP*-flanked promoterless gene (B- or P-incoming construct). They observed the highest frequencies of cassette exchange events when using P-docking sites with B-incoming sequences. Belteki *et al.* used the engineered ES cells to create chimeric mice and demonstrated germline transmission. The ΦC31 integrase thus represents another tool in the genome engineer's toolkit.

References

- 1. Conditional control of gene expression in the mouse.
- 2. *Nature Biotechnology*, [http://www.nature.com/naturebiotechnology]
- 3. Site-specific genomic integration in mammalian cells mediated by phage Φ C31 integrase.

This PDF file was created after publication.