PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Thawing stem cells

ArticleInfo		
ArticleID	:	4671
ArticleDOI	:	10.1186/gb-spotlight-20030108-01
ArticleCitationID	:	spotlight-20030108-01
ArticleSequenceNumber	:	23
ArticleCategory	:	Research news
ArticleFirstPage	÷	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2003–1–8OnlineDate: 2003–1–8
ArticleCopyright	:	BioMed Central Ltd2003
ArticleGrants	:	
ArticleContext	:	130594411

Cord blood is a rich source of hematopoietic stem cells and progenitors cells, and cord blood transplantation has been used to treat both malignant and non-malignant disorders. In the Early Edition of the *Proceedings of the National Academy of Sciences* Broxmeyer *et al.* report analysis of the efficiency of recovery of stem cells from cord blood after 15 years of cryopreservation (*Proc Natl Acad Sci USA* 2002, 10.1073/pnas.0237086100). Extended freezing periods appeared to have no adverse effects on the recovery of progenitor populations or their renewal and proliferative capacities in culture. Furthermore, CD34⁺ cells isolated from cord blood were able to repopulate the hematopoietic system *in*

vivo, when injected into sublethally irradiated non-obese diabetic (NOD)/severe combined immunodeficient (SCID) mice.

References

1. Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling.

2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]