PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Gene clusters in the fly genome

ArticleInfo		
ArticleID	:	4660
ArticleDOI	:	10.1186/gb-spotlight-20021213-01
ArticleCitationID	\Box	spotlight-20021213-01
ArticleSequenceNumber	:	326
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate : 2002–12–13 OnlineDate : 2002–12–13
ArticleCopyright		BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

A number of studies have provided convincing evidence that co-expressed genes are often found in clusters in the yeast, fly, worm or human genomes. In the December 12 Nature Boutanaev *et al.* describe additional examples of clustering of *Drosophila* genes (*Nature* 2002, **420**:666-669). Analysis of available databases of expressed sequence tags (ESTs) identified 4,271 genes expressed in the testes, of which 1,661 appear to be testis-specific. Mapping each EST to the fly genome revealed that about one third of testis-specific genes are clustered; many of these clusters (45%) contain four or more genes. A notable exception was chromosome X, which showed little clustering of testis-specific genes and smaller cluster sizes. Additional EST-based analysis also showed clusters of head-specific genes and embryonic genes. Much remains to be discovered about the role of chromatin structure in the transcriptional regulation of genome clusters.

References

- 1. A computational analysis of whole-genome expression data reveals chromosomal domains of gene expression.
- 2. Evidence for large domains of similarly expressed genes in the *Drosophila* genome.
- 3. Chromosomal clustering of muscle-expressed genes in *Caenorhabditis elegans*.
- 4. The human transcriptome map: clustering of highly expressed genes in chromosomal domains.
- 5. *Nature*, [http://www.nature.com]

This PDF file was created after publication.