PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Clock control

ArticleInfo		
ArticleID	:	4636
ArticleDOI	:	10.1186/gb-spotlight-20021115-01
ArticleCitationID	:	spotlight-20021115-01
ArticleSequenceNumber	:	302
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–11–15OnlineDate: 2002–11–15
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The circadian clock is maintained by daily fluctuations in the Period and Timeless proteins that negatively regulate the transcription of their own genes. In the November 14 Nature, Grima *et al.* describe the mechanism responsible for the phosphorylation-dependent control of Period and Timeless protein degradation in *Drosophila (Nature* 2002, **420**:178-182). Investigation of components of the SCF-mediated ubiquitin proteosome pathway led to the identification of the Slimb protein as an essential cog in the clock within the fly's brain. The *Drosophila* Slimb gene (*Slmb*) encodes an F-box/WD40 protein that regulates the levels of different transcription factors. Rescuing the developmental lethality associated with *Slmb* mutation revealed that adult *Slmb* mutants were completely arrhythmic under conditions of constant darkness: Period and Timeless oscillations are abolished in constant darkness in the *Slmb* mutants, and hyperphosphorylated Period protein accumulates. This is the first characterized example of a proteosome degradation protein that regulates the circadian clock.

References

- 1. Stopping time: the genetics of fly and mouse circadian clocks.
- 2. Nature, [http://www.nature.com]

3. Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb.