PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Muscle checkpoint

ArticleInfo		
ArticleID	:	4628
ArticleDOI	:	10.1186/gb-spotlight-20021106-02
ArticleCitationID	:	spotlight-20021106-02
ArticleSequenceNumber	:	294
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–11–6OnlineDate: 2002–11–6
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Cell-cycle checkpoints ensure that damaged DNA is repaired prior to cell division. In an Advanced Online Publication in Nature Genetics, Puri *et al.* describe characterization of a differentiation checkpoint that operates in muscle cells in response to DNA-damaging agents (*Nature Genetics*, 4 November 2002; DOI:10.1038/ng1023). Treatment of the C2C12 myoblast cell line with different genotoxic drugs (cisplatin, etoposide, or methyl methane sulphate, MMS) blocked the progression of myogenic differentiation and induced cell-cycle arrest. Cisplatin and MMS prevented the transcriptional activity of the myogenic factor MyoD. This inhibition involves the c-Abl tyrosine kinase, but not the p53 or c-Jun proteins that have also been implicated in the DNA-damage response. Puri *et al.* show that MyoD is a direct target of the c-Abl kinase and that phosphorylation of MyoD is critical for inhibition by genotoxic drugs.

References

- 1. The DNA damage response: putting checkpoints in perspective.
- 2. *Nature Genetics*, [http://www.nature.com/ng]