PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Transgene switch

ArticleInfo			
ArticleID	:	4564	
ArticleDOI	:	10.1186/gb-spotlight-20020828-02	
ArticleCitationID	:	spotlight-20020828-02	
ArticleSequenceNumber	:	230	
ArticleCategory	:	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	:	2	
ArticleHistory	:	RegistrationDate: 2002-8-28OnlineDate: 2002-8-28	
ArticleCopyright	:	BioMed Central Ltd2002	
ArticleGrants	:		
ArticleContext	:	130593311	

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The ability to regulate transgene expression levels is essential for many functional genomic and therapeutic applications. In an Advanced Online Publication in Nature Biotechnology, Weber *et al.* describe the development of E.REX, a novel gene regulation system that exploits components of the *Escherichia coli* erythromycin-resistance regulon (*Nature Biotechnology*, 19 August 2002, DOI:10.1038/nbt731). They designed both EOFF and EON systems that are respectively repressed or induced using macrolide antibiotics (including erythromycin, clarithromycin and roxithromycin). Weber *et al.* demonstrated that the E.REX systems can function in mammalian cell lines in culture and in microencapsulated cells transplanted into mice. The binary E.REX system is functionally compatible with the tetracyline-responsive systemallowing for the design of simultaneously regulated multigene applications.

References

1. The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies.

- 2. Nature Biotechnology, [http://biotech.nature.com]
- 3. Transcriptional activation by tetracyclines in mammalian cells.