PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Laying down the jaw

ArticleInfo		
ArticleID	:	4562
ArticleDOI	:	10.1186/gb-spotlight-20020827-01
ArticleCitationID	:	spotlight-20020827-01
ArticleSequenceNumber	:	228
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002-8-27OnlineDate: 2002-8-27
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

The Dlx gene family has been linked to the evolution of the gnathostome (jawed vertebrate) skull. In the 22 August ScienceXpress, Depew *et al.* describe the affect of deleting Dlx5 and Dlx6 genes on the development of the mouse jaw (*Sciencexpress*, 22 August 2002, DOI:10.1126/science.1075703). They performed extensive *in situ* hybridization analysis of mutant embryos to study the expression of genes involved in branchial arch development. In the absence of Dlx5/6 they observed a 'homeotic' transformation of the lower jaw into an upper jaw. Depew *et al.* propose that the establishment of a pattern of nested expression of *Dlx* genes in the branchial arches contributed to the transition from jawless to jawed vertebrates.

References

- 1. Lamprey *Dlx* genes and early vertebrate evolution.
- 2. ScienceXpress, [http://www.sciencexpress.org]

3. The *Dlx5* and *Dlx6* homeobox genes are essential for craniofacial, axial, and appendicular skeletal development