PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Survival signals

ArticleInfo		
ArticleID	:	4553
ArticleDOI	:	10.1186/gb-spotlight-20020813-01
ArticleCitationID	:	spotlight-20020813-01
ArticleSequenceNumber	:	219
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002-8-13OnlineDate: 2002-8-13
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Signalling by the c-Jun N-terminal kinase (JNK) pathway has been implicated in the cellular response to stress and the induction of apoptosis. In an Advanced Online Publication in Nature Genetics, Hess *et al.* demonstrate a clear role for JNK1 in cell survival (*Nature Genetics*, 5 August 2002, doi:10.1038/ ng946). They used knockout mice lacking the *Mapk8/jnk1* gene to investigate the role of JNK signalling in B-cell transformation induced by the leukemogenic oncogene *BCR-ABL*. They observed reduced *BCR-ABL* transformation of pre-B cells *in vitro* in the absence of JNK1, and altered leukemia *in vivo*. JNK1 deletion resulted in decreased cell survival and reduced expression of the anti-apoptotic Bcl-2 protein. Restoring Bcl-2 expression, using transgenic animals, restored B-cell leukemogenesis.

References

- 1. The JNK signal transduction pathway.
- 2. Nature Genetics, [http://www.nature.com/ng/]