PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Nematode immunity

ArticleInfo		
ArticleID	:	4542
ArticleDOI	:	10.1186/gb-spotlight-20020729-01
ArticleCitationID	:	spotlight-20020729-01
ArticleSequenceNumber	:	208
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–7–29OnlineDate: 2002–7–29
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The importance of the innate immune system is underscored by its remarkable conservation in the immunity strategies of organisms from flies to mammals. In the July 26 Science, Kim *et al.* report the results of a genetic analysis of immune function in the nematode, *Caenorhabditis elegans (Science* 2002, **297**:623-626). To screen for 'enhanced susceptibility to pathogen' (Esp) mutants, they monitored the response of mutagenized F2-generation larval-stage nematodes to infections with the bacterium *Pseudomonas aeruginosa.* Wild-type worms typically begin to die at around 34 hours. They screened 14,000 haploid genomes and identified several mutants that were killed by 31 hours. These strains were also hyper-sensitive to infection with Gram-positive pathogens. Kim *et al.* used high-resolution mapping of single-nucleotide polymorphisms (SNPs) to identify the mutant genes. Two of the Esp mutants had inactivating mutations in genes encoding components of the MAP kinase signal transduction pathway, namely *sek*-1 (an MKK3 homolog) and *nsy*-1 (an ASK1 homolog). Kim *et al.* then used RNAi experiments to demonstrate that the downstream transcription factor p38/pmk-1 is also required for pathogen defence.

References

- 1. Phylogenetic perspectives in innate immunity.
- 2. Science, [http://www.sciencemag.org]