PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName		BioMed Central		

Methylcytosine and mutation

ArticleInfo		
ArticleID	:	4536
ArticleDOI		10.1186/gb-spotlight-20020722-01
ArticleCitationID		spotlight-20020722-01
ArticleSequenceNumber	\Box	202
ArticleCategory	\Box	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2002–7–22 OnlineDate : 2002–7–22
ArticleCopyright	\vdots	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

MBD4 is a methyl-CpG-binding protein with thymine-DNA-glycolase activity that can remove T bases from T-G mismatches within a CpG context. In the July 19 Science, Millar *et al.* describe analysis of mice lacking the *Mbd4* gene (*Science* 2002, **297**:403-405). They generated *Mbd4-/-* knockout mice and bred them with the 'Big Blue' reporter strain to measure mutation frequency. They found that the knockout mice had a three-fold higher frequency of C to T transitions at CpG sites. Then Millar *et al.* tested the effect of *Mbd4* mutation on cancer susceptibility. They crossed *Mbd4-/-* knockout mice with animals carrying the Min allele of the adenomatous polyposis coli gene (*ApcMin*). They observed increased tumor formation in the colon and C to T mutations in the *Apc* gene. These results provide further evidence for the role of MBD4 in tumor suppression.

References

- 1. Role of MED1 (MBD4) Gene in DNA repair and human cancer
- 2. Science, [http://www.sciencemag.org]
- 3. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene.