PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	\Box	BioMed Central		

Genome SCORE

ArticleInfo		
ArticleID	:	4527
ArticleDOI		10.1186/gb-spotlight-20020712-01
ArticleCitationID		spotlight-20020712-01
ArticleSequenceNumber	\Box	193
ArticleCategory	\Box	Research news
ArticleFirstPage	\Box	1
ArticleLastPage	\Box	2
ArticleHistory	:	RegistrationDate : 2002–7–12 OnlineDate : 2002–7–12
ArticleCopyright	\vdots	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

Deciphering the *cis*-regulatory code hidden within genome sequences is a formidable challenge for the post-genomic era. In the Early Edition of the Proceedings of the National Academy of Sciences, Rebeiz *et al.* report the creation of a computational method for identifying potential *cis*-regulatory modules and target genes. Their algorithm, called SCORE (Site Clustering Over Random Expectation), evaluates statistically significant enrichment for clusters of binding sites of a particular transcription factor within genome sequence. Rebeiz *et al.* validated this approach by looking for enhancers regulated by Suppressor of Hairless [Su(H)], a component of the Notch signalling pathway in *Drosophila*. They found over 15,000 potential Su(H)-binding sites in the *Drosophila* genome and used the well-known observation that *bona fide* binding sites are often clustered to identify potentially significant binding sites, within clusters. Many of these clusters fall near genes that are regulated by Notch signalling. Rebeiz *et al.* provide experimental support for their results by showing that one of the clusters regulates Su(H)-dependent expression.

References

- 1. Proceedings of the National Academy of Sciences, [http://www.pnas.org]
- 2. SCORE: A computational approach to the identification of cis-regulatory modules and target genes in whole-genome sequence data , [http://www.pnas.org/cgi/doi/10.1073/pnas.152320899]
- 3. Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity.