PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Mutations in mental retardation

ArticleInfo			
ArticleID	:	4520	
ArticleDOI	:	10.1186/gb-spotlight-20020703-01	
ArticleCitationID	:	spotlight-20020703-01	
ArticleSequenceNumber	:	186	
ArticleCategory	:	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	:	2	
ArticleHistory	:	RegistrationDate: 2002–7–3OnlineDate: 2002–7–3	
ArticleCopyright	:	BioMed Central Ltd2002	
ArticleGrants	:		
ArticleContext	:	130593311	

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The genetic and molecular basis of mental retardation, which may affect up to 3% of the human population, is unclear. In the June 28 Science, Vervoort *et al.* report that mutations in the *AGTR2* gene, encoding the angiotensin II receptor may affect cognitive function in people with X-linked mental retardation (XLMR; *Science* 2002, **296**:2401-2403). Linkage analysis of XLMR families suggested that the Xq23-25 region might contain more than one gene related to the disease. Vervoort *et al.* studied translocation breakpoints in a female patient with mild retardation (with an IQ of 44); they examined expression of several candidate genes in the breakpoint region and found that the *AGTR2* gene was silenced. They then screened affected males in several XLMR families and found one with a mutation in the *AGTR2* gene that results in a truncated protein. Additional retardation patients with were also found *AGTR2* mutations in the extracellular and intracellular domains of the receptor. The functional role of the angiotensin-renin system in brain function thus merits further investigation.

References

- 1. Monogenic causes of X-linked mental retardation.
- 2. Science, [http://www.sciencemag.org]

This PDF file was created after publication.