PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Responding to loss

ArticleInfo			
ArticleID	:	4513	
ArticleDOI	:	10.1186/gb-spotlight-20020626-01	
ArticleCitationID	:	spotlight-20020626-01	
ArticleSequenceNumber	:	179	
ArticleCategory	:	Research news	
ArticleFirstPage	:	1	
ArticleLastPage	:	2	
ArticleHistory	:	RegistrationDate: 2002-6-26OnlineDate: 2002-6-26	
ArticleCopyright	:	BioMed Central Ltd2002	
ArticleGrants	:		
ArticleContext	:	130593311	

The response of cells to telomere loss is thought to resemble the DNA damage response. In the Early Edition of the Proceedings of the National Academy of Sciences, Nautiyal *et al.* describe genome-wide gene expression changes upon deletion of *TLC1*, the telomerase RNA component in *Saccharomyces cerevisiae* (*Proc Natl Acad Sci USA* 2002, 10.1073/pnas.142162499). The coin the term 'telomerase deletion response' (TDR) to refer to the transcriptional program induced by telomere shortening. The TDR overlaps with the DNA damage response and the environmental stress response. Nautiyal *et al.* define a set of genes, the 'telomerase deletion signature', that are distinct from other stress responses.

References

- 1. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]

This PDF file was created after publication.