PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Somatic hypermutation

ArticleInfo		
ArticleID	:	4506
ArticleDOI	:	10.1186/gb-spotlight-20020618-01
ArticleCitationID	:	spotlight-20020618-01
ArticleSequenceNumber	:	172
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–6–18OnlineDate: 2002–6–18
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Somatic hypermutation, gene conversion and class-switch recombination are genetic rearrangements that generate the molecular diversity of immunoglobulin genes underlying the human immune system. In the June 14 Science, Yoshikawa *et al.* report that a single enzyme, activation-induced cytidine deaminase (AID), is sufficient to generate somatic hypermutation in fibroblasts cells (*Science* 2002, **296**:2033-2036). To examine hypermutation, they created an NIH3T3 fibroblast cell line expressing a tetracycline-regulated mutant green fluorescent protein (GFP) gene containing a premature stop codon. They were able to select GFP-positive cells (around 1-1.8% of cells) following introduction of functional AID, but not an inactive AID isoform. The mutation rate increased with the level of transcriptional induction of GFP. Yoshikawa *et al.* found large numbers of mutations in the *GFP* gene when the target gene was transcribed (4.5 x 10-4 mutations per base pair per generation). The type of AID-induced mutations resembled those of somatic hypermutation of immunoglobulin genes.

References

- 1. Somatic hypermutation.
- 2. Science, [http://www.sciencemag.org]