PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Comparing Enterococcusgenomes

ArticleInfo		
ArticleID	:	4505
ArticleDOI	:	10.1186/gb-spotlight-20020617-01
ArticleCitationID	:	spotlight-20020617-01
ArticleSequenceNumber	:	171
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–6–17OnlineDate: 2002–6–17
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Enterococci form part of our natural intestinal flora, but also cause antibiotic-resistant infections in hospitals. In the June 13 Nature, Shankar *et al.* describe an analysis of different Enterococcus faecalisstrains, one from a hospital ward outbreak in the mid-1980s, MMH594, and the other from the first vancomycin-resistant isolate, V583 (*Nature* 2002, **417**:746-750). Genomic comparisons revealed that the V583 isolate lacks a 17 kb region containing virulence genes, such as the cytolysin operon. Further comparison with the sequence of the non-infection-derived OG1 strain showed that the clinical isolates have a genomic insertion of around 150 kb. This element contains over one hundred genes encoding transposases, transcriptional regulators and virulence-associated proteins. The characterization of this novel pathogenicity island should be of benefit for diagnosis and for the identification of new drug targets.

References

- 1. Nature, [http://www.nature.com]
- 2. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future.
- 3. The Institute for Genomic Research, [http://www.tigr.org/]