PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

Annotating Anopheles

ArticleInfo		
ArticleID	:	4503
ArticleDOI	:	10.1186/gb-spotlight-20020613-01
ArticleCitationID	:	spotlight-20020613-01
ArticleSequenceNumber	:	169
ArticleCategory	:	Research news
ArticleFirstPage	÷	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002-6-13OnlineDate: 2002-6-13
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

Anopheles gambiae is the mosquito vector that is responsible for the transmission of malaria across Africa. In the June 11 Proceedings of the National Academy of Sciences, Thomasova *et al.* report the sequencing of bacterial artificial chromosomes (BACs) covering over 500 kilobases from the *Pen1* locus within the 8C region of *A. gambiae* chromosome 2R (*Proc Natl Acad Sci USA* 2002, **99:**8179-8184). Sequence analysis led to the identification and annotation of 48 genes (46 encoding proteins and 2 for tRNAs). Comparison with the genomic sequence of another dipteran insect, *Drosophila melanogaster*, revealed considerable conservation (38 of the 46 genes have fruit fly homolog) and regions of microsynteny. Also, Thomasova *et al.* found evidence for extensive local sequence variation within the *A. gambiae* genome. This study demonstrates how comparison with the *Drosophila* genome sequence is likely to accelerate annotation and analysis of the *Anopheles* genome.

References

- 1. What's buzzing? Mosquito genomics and transgenic mosquitoes.
- 2. Proceedings of the National Academy of Sciences, [http://www.pnas.org]