PublisherInfo				
PublisherName		BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Cow clones

ArticleInfo		
ArticleID	:	4493
ArticleDOI		10.1186/gb-spotlight-20020529-01
ArticleCitationID		spotlight-20020529-01
ArticleSequenceNumber	:	159
ArticleCategory	$\begin{bmatrix} \vdots \end{bmatrix}$	Research news
ArticleFirstPage	:	1
ArticleLastPage		2
ArticleHistory	:	RegistrationDate : 2002–5–29 OnlineDate : 2002–5–29
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext		130593311

Jonathan B Weitzman

Email: jonathanweitzman@hotmail.com

X-chromosome inactivation, the largest epigenetic event known, involves random silencing of one of the two X chromosomes in the cells of female mammals. In an Advanced Early Publication in Nature Genetics, Xue *et al.* report defects in X inactivation in cells from cloned bovine embryos (*Nature Genetics*, 18 May 2002, DOI:10.1038/ng900). They looked at the allele-specific expression of the X-linked monoamine oxidase type A (*MAOA*) gene and at the expression of *Xist* and other X-linked genes in cloned XX calves. They found evidence for aberrant X-chromosome inactivation in deceased clones, and incomplete nuclear reprogramming. Xue *et al.* show that X-chromosome inactivation is paternally imprinted in extra-embryonic tissues of normal cows, but is random in the placentae of deceased clones. The defective patterns of X inactivation seen in cloned cows are in contrast to the normal X inactivation events reported in cloned mice.

References

- 1. X-chromosome inactivation in mammals.
- 2. *Nature Genetics*, [http://www.nature.com/ng/]
- 3. X-Chromosome inactivation in cloned mouse embryos.