PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation		London		
PublisherImprintName	:	BioMed Central		

Anthrax genomics

ArticleInfo		
ArticleID	:	4475
ArticleDOI	:	10.1186/gb-spotlight-20020509-02
ArticleCitationID	:	spotlight-20020509-02
ArticleSequenceNumber	:	141
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–5–9OnlineDate: 2002–5–9
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	:	
ArticleContext	:	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The threat of bioterrorism has renewed interest in techniques for pathogen detection, monitoring and analysis. In the May 8 ScienceXpress, Timothy Read and researchers at The Institute for Genome Research (TIGR) Maryland, USA, describe a genome-based analysis of *Bacillus anthracis*, the causative agent of anthrax (DOI:10.1126/science.1071837). They assembled sequences from a recent isolate of *B. anthracis* used in a series of fatal letter-based attacks in Florida that followed in the wake of the World Trade Center tragedy on September 11, and compared them with a reference strain (referred to as the Porton isolate). They discovered four sequence differences in the *B. anthracis* chromosome: two single nucleotide polymorphisms (SNPs) and two short insertions/deletions. Comparison of the pXO virulence plasmids with those from the Sterne and Pasteur strains revealed a further 38 SNPs, eight VNTRs and three large insertion/deletions. Some of these polymorphisms will be useful as genetic markers in future monitoring of bioterrorism attacks or infectious outbreaks.

References

- 1. ScienceXpress, [http://www.sciencemag.org/sciencexpress/recent.shtml]
- 2. The Institute for Genome Research (TIGR), [http://www.tigr.org]

This PDF file was created after publication.