PublisherInfo				
PublisherName	:	BioMed Central		
PublisherLocation	:	London		
PublisherImprintName	:	BioMed Central		

The riddle of the pharynx

ArticleInfo		
ArticleID	:	4392
ArticleDOI	:	10.1186/gb-spotlight-20020205-01
ArticleCitationID	:	spotlight-20020205-01
ArticleSequenceNumber	:	58
ArticleCategory	:	Research news
ArticleFirstPage	:	1
ArticleLastPage	:	2
ArticleHistory	:	RegistrationDate: 2002–2–5OnlineDate: 2002–2–5
ArticleCopyright	:	BioMed Central Ltd2002
ArticleGrants	÷	
ArticleContext	÷	130593311

Jonathan B Weitzman Email: jonathanweitzman@hotmail.com

The pharynx of *Caenorhabditis elegans* is a neuromuscular organ responsible for pumping food in from the environment and for initiating digestion. Organogenesis of the pharynx involves complex patterning and morphogenesis events, and the differentiation of distinct precursor cells. In the February 1 Science, Gaudet and Mango from the University of Utah report a genomic analysis of the role of the PHA-4 protein, a homologue of the forkhead box A (FoxA/HNF3) transcription factor involved in pharyngeal development (*Science* 2002, **295**:821-825). They screened C. elegansmicroarrays with material from embryos that have either excess or no pharyngeal cells and identified 240 genes of interest. The vast majority (over 80%) of the genes they identified were expressed selectively in the pharynx. Many of these genes have clusters of PHA-4 binding sequences in their promoter regions, and these were critical for pharyngeal expression. Analysis of a *pha-4(ts)*mutant confirmed that PHA-4 is essential for pharyngeal genes was related to the affinity of the PHA-4-binding elements in their promoters.

References

- 1. Early morphogenesis of the Caenorhabditis elegans pharynx.
- 2. Science, [http://www.sciencemag.org]
- 3. University of Utah , [http://www.utah.edu]
- 4. A global profile of germline gene expression in C. elegans.